Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 5 results
  • https://math.libretexts.org/Bookshelves/Calculus/Calculus_3e_(Apex)/10%3A_Vectors/10.03%3A_The_Dot_Product
    The previous section introduced vectors and described how to add them together and how to multiply them by scalars. This section introduces a multiplication on vectors called the dot product.
  • https://math.libretexts.org/Courses/Mission_College/MAT_04C_Linear_Algebra_(Kravets)/07%3A_Orthogonality/7.03%3A_Orthogonal_Projection
    Let W be a subspace of Rn and let x be a vector in Rn . In this section, we will learn to compute the closest vector xW to x in W. The vector xW is called the orthogonal projection of x...Let W be a subspace of Rn and let x be a vector in Rn . In this section, we will learn to compute the closest vector xW to x in W. The vector xW is called the orthogonal projection of x onto W . This is exactly what we will use to almost solve matrix equations.
  • https://math.libretexts.org/Under_Construction/Purgatory/Differential_Equations_and_Linear_Algebra_(Zook)/18%3A_Orthonormal_Bases_and_Complements/18.04%3A_Gram-Schmidt_and_Orthogonal_Complements
    v^{\perp} \cdot w^{\perp}&=v^{\perp} \cdot \left(w - \dfrac{u\cdot w}{u\cdot u}\,u - \dfrac{v^{\perp}\cdot w}{v^{\perp}\cdot v^{\perp}}\,v^{\perp} \right)\\ &=v^{\perp}\cdot w - \dfrac{u \cdot w}{u \c...v^{\perp} \cdot w^{\perp}&=v^{\perp} \cdot \left(w - \dfrac{u\cdot w}{u\cdot u}\,u - \dfrac{v^{\perp}\cdot w}{v^{\perp}\cdot v^{\perp}}\,v^{\perp} \right)\\ &=v^{\perp}\cdot w - \dfrac{u \cdot w}{u \cdot u}v^{\perp} \cdot u - \dfrac{v^{\perp} \cdot w}{v^{\perp} \cdot v^{\perp}} v^{\perp} \cdot v^{\perp} \\
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Interactive_Linear_Algebra_(Margalit_and_Rabinoff)/06%3A_Orthogonality/6.03%3A_Orthogonal_Projection
    This page explains the orthogonal decomposition of vectors concerning subspaces in Rn, detailing how to compute orthogonal projections using matrix representations. It includes methods f...This page explains the orthogonal decomposition of vectors concerning subspaces in Rn, detailing how to compute orthogonal projections using matrix representations. It includes methods for deriving projection matrices, with an emphasis on linear transformations and their properties. The text outlines the relationship between a subspace and its orthogonal complement, utilizing examples to illustrate projection calculations and reflections across subspaces.
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron_Cherney_and_Denton)/14%3A_Orthonormal_Bases_and_Complements/14.04%3A_Gram-Schmidt_and_Orthogonal_Complements
    v^{\perp} \cdot w^{\perp}&=v^{\perp} \cdot \left(w - \dfrac{u\cdot w}{u\cdot u}\,u - \dfrac{v^{\perp}\cdot w}{v^{\perp}\cdot v^{\perp}}\,v^{\perp} \right)\\ &=v^{\perp}\cdot w - \dfrac{u \cdot w}{u \c...v^{\perp} \cdot w^{\perp}&=v^{\perp} \cdot \left(w - \dfrac{u\cdot w}{u\cdot u}\,u - \dfrac{v^{\perp}\cdot w}{v^{\perp}\cdot v^{\perp}}\,v^{\perp} \right)\\ &=v^{\perp}\cdot w - \dfrac{u \cdot w}{u \cdot u}v^{\perp} \cdot u - \dfrac{v^{\perp} \cdot w}{v^{\perp} \cdot v^{\perp}} v^{\perp} \cdot v^{\perp} \\

Support Center

How can we help?