Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 4 results
  • https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/02%3A_Algebra_Support/2.21%3A_Dividing_Radical_Expressions
    When we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator ...When we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator with a higher index radical, we multiply the numerator and denominator by a radical that would give us a radicand that is a perfect power of the index.
  • https://math.libretexts.org/Bookshelves/Algebra/Elementary_Algebra_(Ellis_and_Burzynski)/09%3A_Roots_Radicals_and_Square_Root_Equations/9.05%3A_Division_of_Square_Root_Expressions
    \(\dfrac{\sqrt{21}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7} \cdot \dfrac{\sqrt{7}}{\sqrt{7}}=\dfrac{\sqrt{21 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7^{2}}}{7}=\dfrac{7 \sqrt{3}}{...217=21777=2177=3777=3727=737=3 \dfrac{\sqrt{2 x}}{\sqrt{3}-\sqrt{5 x}} \cdot \dfrac{\sqrt{3}+\sqrt{5 x}}{\sqrt{3}+\sqrt{5 x}} &=\dfrac{\sqrt{2 x}(\sqrt{3}+\sqrt{5 x})}{(\sqrt{3})^{2}-(\sqrt{5 x})^{2}} \\
  • https://math.libretexts.org/Courses/Santiago_Canyon_College/HiSet_Mathematica_(Lopez)/23%3A_Raices_Radicales_y_Ecuaciones_de_Raiz_Cuadrada/23.05%3A_Division_de_expresiones_de_raiz_cuadrada
    \(\dfrac{\sqrt{21}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7} \cdot \dfrac{\sqrt{7}}{\sqrt{7}}=\dfrac{\sqrt{21 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7^{2}}}{7}=\dfrac{7 \sqrt{3}}{...217=21777=2177=3777=3727=737=3 \ dfrac {\ sqrt {2 x}} {\ sqrt {3} -\ sqrt {5 x}}\ cdot\ dfrac {\ sqrt {3} +\ sqrt {5 x}} {\ sqrt {3} +\ sqrt {5 x}} &=\ dfrac {\ sqrt {2 x} (\ sqrt {3} +\ sqrt {5 x})} {(\ sqrt {3}) ^ {2} - (\ sqrt {5 x}) ^ {2}}\\
  • https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.02%3A_Algebra_Support/1.2.21%3A_Dividing_Radical_Expressions
    When we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator ...When we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator with a higher index radical, we multiply the numerator and denominator by a radical that would give us a radicand that is a perfect power of the index.

Support Center

How can we help?