Search
- https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/02%3A_Algebra_Support/2.21%3A_Dividing_Radical_ExpressionsWhen we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator ...When we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator with a higher index radical, we multiply the numerator and denominator by a radical that would give us a radicand that is a perfect power of the index.
- https://math.libretexts.org/Bookshelves/Algebra/Elementary_Algebra_(Ellis_and_Burzynski)/09%3A_Roots_Radicals_and_Square_Root_Equations/9.05%3A_Division_of_Square_Root_Expressions\(\dfrac{\sqrt{21}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7} \cdot \dfrac{\sqrt{7}}{\sqrt{7}}=\dfrac{\sqrt{21 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7^{2}}}{7}=\dfrac{7 \sqrt{3}}{...√21√7=√217⋅√7√7=√21⋅77=√3⋅7⋅77=√3⋅727=7√37=√3 \dfrac{\sqrt{2 x}}{\sqrt{3}-\sqrt{5 x}} \cdot \dfrac{\sqrt{3}+\sqrt{5 x}}{\sqrt{3}+\sqrt{5 x}} &=\dfrac{\sqrt{2 x}(\sqrt{3}+\sqrt{5 x})}{(\sqrt{3})^{2}-(\sqrt{5 x})^{2}} \\
- https://math.libretexts.org/Courses/Santiago_Canyon_College/HiSet_Mathematica_(Lopez)/23%3A_Raices_Radicales_y_Ecuaciones_de_Raiz_Cuadrada/23.05%3A_Division_de_expresiones_de_raiz_cuadrada\(\dfrac{\sqrt{21}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7} \cdot \dfrac{\sqrt{7}}{\sqrt{7}}=\dfrac{\sqrt{21 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7 \cdot 7}}{7}=\dfrac{\sqrt{3 \cdot 7^{2}}}{7}=\dfrac{7 \sqrt{3}}{...√21√7=√217⋅√7√7=√21⋅77=√3⋅7⋅77=√3⋅727=7√37=√3 \ dfrac {\ sqrt {2 x}} {\ sqrt {3} -\ sqrt {5 x}}\ cdot\ dfrac {\ sqrt {3} +\ sqrt {5 x}} {\ sqrt {3} +\ sqrt {5 x}} &=\ dfrac {\ sqrt {2 x} (\ sqrt {3} +\ sqrt {5 x})} {(\ sqrt {3}) ^ {2} - (\ sqrt {5 x}) ^ {2}}\\
- https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.02%3A_Algebra_Support/1.2.21%3A_Dividing_Radical_ExpressionsWhen we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator ...When we rationalized a square root, we multiplied the numerator and denominator by a square root that would give us a perfect square under the radical in the denominator. To rationalize a denominator with a higher index radical, we multiply the numerator and denominator by a radical that would give us a radicand that is a perfect power of the index.