Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Prince_Georges_Community_College/MAT_2410%3A_Calculus_1_(Beck)/05%3A_Integration/5.01%3A_Approximating_AreasIn this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the are...In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the area under the curve using shapes of known area (namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking a limit allows us to calculate the exact area under the curve.
- https://math.libretexts.org/Courses/Chabot_College/MTH_1%3A_Calculus_I/05%3A_Integration/5.01%3A_Approximating_AreasIn this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the are...In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the area under the curve using shapes of known area (namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking a limit allows us to calculate the exact area under the curve.
- https://math.libretexts.org/Bookshelves/Algebra/College_Algebra_1e_(OpenStax)/09%3A_Sequences_Probability_and_Counting_Theory/9.05%3A_Series_and_Their_NotationsThe sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigm...The sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigma, ∑, to represent the sum. Summation notation includes an explicit formula and specifies the first and last terms in the series. In this section, we will learn how to use series to address annuity problems.
- https://math.libretexts.org/Courses/Monroe_Community_College/MTH_210_Calculus_I_(Professor_Dean)/Chapter_5%3A_Integration/5.1%3A_Approximating_AreasIn this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b].
- https://math.libretexts.org/Workbench/College_Algebra_2e_(OpenStax)/09%3A_Sequences_Probability_and_Counting_Theory/9.05%3A_Series_and_Their_NotationsThe sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigm...The sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigma, ∑, to represent the sum. Summation notation includes an explicit formula and specifies the first and last terms in the series. In this section, we will learn how to use series to address annuity problems.
- https://math.libretexts.org/Courses/Lorain_County_Community_College/Book%3A_Precalculus_Jeffy_Edits_3.75/09%3A_Sequences_and_the_Binomial_Theorem/9.02%3A_Summation_NotationIn the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence.
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Everett)/05%3A_Integration/5.01%3A_Approximating_AreasIn this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the are...In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the area under the curve using shapes of known area (namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking a limit allows us to calculate the exact area under the curve.
- https://math.libretexts.org/Courses/Reedley_College/College_Algebra_1e_(OpenStax)/09%3A_Sequences_Probability_and_Counting_Theory/9.04%3A_Series_and_Their_NotationsThe sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigm...The sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigma, ∑, to represent the sum. Summation notation includes an explicit formula and specifies the first and last terms in the series. In this section, we will learn how to use series to address annuity problems.
- https://math.libretexts.org/Workbench/Algebra_and_Trigonometry_2e_(OpenStax)/13%3A_Sequences_Probability_and_Counting_Theory/13.05%3A_Series_and_Their_NotationsThe sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigm...The sum of the terms of a sequence is called a series. Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the Greek capital letter sigma, ∑, to represent the sum. Summation notation includes an explicit formula and specifies the first and last terms in the series. In this section, we will learn how to use series to address annuity problems.
- https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q2/01%3A_Integration/1.01%3A_Approximating_AreasIn this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the are...In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the area under the curve using shapes of known area (namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking a limit allows us to calculate the exact area under the curve.
- https://math.libretexts.org/Courses/Penn_State_University_Greater_Allegheny/Math_140%3A_Calculus_1_(Gaydos)/05%3A_Integration/5.01%3A_Approximating_AreasIn this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the are...In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis on a closed interval [a,b]. Like Archimedes, we first approximate the area under the curve using shapes of known area (namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking a limit allows us to calculate the exact area under the curve.