Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 4 results
  • https://math.libretexts.org/Courses/De_Anza_College/Linear_Algebra%3A_A_First_Course/06%3A_Spectral_Theory
    This page discusses Eigenvalues and Eigenvectors in Spectral Theory, covering special matrices, diagonalization, applications, Markov matrices, dynamical systems, orthogonal diagonalization, singular ...This page discusses Eigenvalues and Eigenvectors in Spectral Theory, covering special matrices, diagonalization, applications, Markov matrices, dynamical systems, orthogonal diagonalization, singular value decomposition, special factorizations, and quadratic forms. It includes exercises for practice to enhance understanding of both theoretical and practical aspects of these concepts.
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Linear_Algebra_with_Applications_(Nicholson)/08%3A_Orthogonality/8.06%3A_The_Singular_Value_Decomposition
    \[\begin{aligned} P\Sigma _{A} & = \left[ \begin{array}{cccccc}\mathbf{p}_{1} & \cdots & \mathbf{p}_{r} & \mathbf{p}_{r+1} & \cdots & \mathbf{p}_{m}\end{array}\right] \left[ \begin{array}{cc} \begin{a...\[\begin{aligned} P\Sigma _{A} & = \left[ \begin{array}{cccccc}\mathbf{p}_{1} & \cdots & \mathbf{p}_{r} & \mathbf{p}_{r+1} & \cdots & \mathbf{p}_{m}\end{array}\right] \left[ \begin{array}{cc} \begin{array}{ccc} \sigma _{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma _{r} \end{array} & \begin{array}{ccc} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{array} \\ \begin{array}{ccc} 0 & \cdots & ~0 \\ \vdots & & \vdots \\ 0 & \cdots & ~0 \end{array} & \begin{array}{cc…
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Book%3A_Linear_Algebra_(Schilling_Nachtergaele_and_Lankham)/11%3A_The_Spectral_Theorem_for_normal_linear_maps/11.07%3A_Singular-value_decomposition
    The singular-value decomposition generalizes the notion of diagonalization.
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron_Cherney_and_Denton)/17%3A_Least_Squares_and_Singular_Values/17.01%3A_Singular_Value_Decomposition
    Singular values appear in many linear algebra applications, especially those involving very large data sets such as statistics and signal processing.

Support Center

How can we help?