Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Coastline_College/Math_C280%3A_Calculus_III_(Tran)/06%3A_Appendices/6.03%3A_Table_of_Integrals39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,du=\sqrt{a^2+u^2}−a\ln \left|\frac{a+\sqrt{a^2+u^2}}{u}\right|+C\) 71. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u^2}\,du=−\frac{\sqrt{a^2+u^2}}{u}+\ln \left(u+\sqrt{a^2+u^2}\right)+C\)
- https://math.libretexts.org/Courses/El_Centro_College/MATH_2514_Calculus_III/Z%3A_Appendices/Table_of_Integrals39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,du=\sqrt{a^2+u^2}−a\ln \left|\frac{a+\sqrt{a^2+u^2}}{u}\right|+C\) 71. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u^2}\,du=−\frac{\sqrt{a^2+u^2}}{u}+\ln \left(u+\sqrt{a^2+u^2}\right)+C\)
- https://math.libretexts.org/Courses/Coastline_College/Math_C280%3A_Calculus_III_(Everett)/06%3A_Appendices/6.03%3A_Table_of_Integrals39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,...39. \(\quad \displaystyle ∫u^n\sin u\,du=−u^n\cos u+n∫u^{n−1}\cos u\,du\) 40. \(\quad \displaystyle ∫u^n\cos u\,du=u^n\sin u−n∫u^{n−1}\sin u\,du\) 70. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u}\,du=\sqrt{a^2+u^2}−a\ln \left|\frac{a+\sqrt{a^2+u^2}}{u}\right|+C\) 71. \(\quad \displaystyle ∫\frac{\sqrt{a^2+u^2}}{u^2}\,du=−\frac{\sqrt{a^2+u^2}}{u}+\ln \left(u+\sqrt{a^2+u^2}\right)+C\)
- https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_pseeburger/MATH_223_Calculus_III/Appendices/Table_of_Integrals