Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.3: Table of Integrals

( \newcommand{\kernel}{\mathrm{null}\,}\)

For this course, all work must be shown to obtain most of these integral forms. Of the integration formulas listed below, the only ones that can be applied without further work are #1 - 10, 15 - 17, and 49 and 50. And even these will require work to be shown if a substitution is involved.

All others may be helpful for checking your final answers, but cannot be used to skip the necessary work to show you understand how to use the integration techniques taught in this course.

As you look through these formulas, you should be able to recognize which integration technique was needed to obtain the general formula. It may be very useful for you to try to obtain the general formula yourself using the techniques we learn in this course.

Basic Integrals

1. undu=un+1n+1+C,n1

2. duu=ln|u|+C

3. eudu=eu+C

4. audu=aulna+C

5. sinudu=cosu+C

6. cosudu=sinu+C

7. sec2udu=tanu+C

8. csc2udu=cotu+C

9. secutanudu=secu+C

10. cscucotudu=cscu+C

11. tanudu=ln|secu|+C

12. cotudu=ln|sinu|+C

13. secudu=ln|secu+tanu|+C

14. cscudu=ln|cscucotu|+C

15. dua2u2=arcsin(ua)+C

16. dua2+u2=1aarctan(ua)+C

17. duuu2a2=1aarcsec(|u|a)+C

Trigonometric Integrals

18. sin2udu=12u14sin2u+C

19. cos2udu=12u+14sin2u+C

20. tan2udu=tanuu+C

21. cot2udu=cotuu+C

22. sin3udu=13(2+sin2u)cosu+C

23. cos3udu=13(2+cos2u)sinu+C

24. tan3udu=12tan2u+ln|cosu|+C

25. cot3udu=12cot2uln|sinu|+C

26. sec3udu=12secutanu+12ln|secu+tanu|+C

27. csc3udu=12cscucotu+12ln|cscucotu|+C

28. sinnudu=1nsinn1ucosu+n1nsinn2udu

29. cosnudu=1ncosn1usinu+n1ncosn2udu

30. tannudu=1n1tann1utann2udu

31. cotnudu=1n1cotn1ucotn2udu

32. secnudu=1n1tanusecn2u+n2n1secn2udu

33. cscnudu=1n1cotucscn2u+n2n1cscn2udu

34. sinausinbudu=sin(ab)u2(ab)sin(a+b)u2(a+b)+C

35. cosaucosbudu=sin(ab)u2(ab)+sin(a+b)u2(a+b)+C

36. sinaucosbudu=cos(ab)u2(ab)cos(a+b)u2(a+b)+C

37. usinudu=sinuucosu+C

38. ucosudu=cosu+usinu+C

39. unsinudu=uncosu+nun1cosudu

40. uncosudu=unsinunun1sinudu

41. sinnucosmudu= Use the methods for powers of sine and cosine

Exponential and Logarithmic Integrals

42. ueaudu=1a2(au1)eau+C

43. uneaudu=1auneaunaun1eaudu

44. eausinbudu=eaua2+b2(asinbubcosbu)+C

45. eaucosbudu=eaua2+b2(acosbu+bsinbu)+C

46. lnudu=ulnuu+C

47. unlnudu=un+1(n+1)2[(n+1)lnu1]+C

48. 1ulnudu=ln|lnu|+C

Hyperbolic Integrals

49. sinhudu=coshu+C

50. coshudu=sinhu+C

51. tanhudu=lncoshu+C

52. cothudu=ln|sinhu|+C

53. sechudu=arctan|sinhu|+C

54. cschudu=lntanh12u+C

55. sech2udu=tanhu+C

56. csch2udu=cothu+C

57. sechutanhudu=sechu+C

58. cschucothudu=cschu+C

Inverse Trigonometric Integrals

59. arcsinudu=uarcsinu+1u2+C

60. arccosudu=uarccosu1u2+C

61. arctanudu=uarctanu12ln(1+u2)+C

62. uarcsinudu=2u214arcsinu+u1u24+C

63. uarccosudu=2u214arccosuu1u24+C

64. uarctanudu=u2+12arctanuu2+C

65. unarcsinudu=1n+1[un+1arcsinuun+1du1u2],n1

66. unarccosudu=1n+1[un+1arccosu+un+1du1u2],n1

67. unarctanudu=1n+1[un+1arctanuun+1du1+u2],n1

Integrals Involving a2 + u2, a > 0

68. a2+u2du=u2a2+u2+a22ln(u+a2+u2)+C

69. u2a2+u2du=u8(a2+2u2)a2+u2a48ln(u+a2+u2)+C

70. a2+u2udu=a2+u2aln|a+a2+u2u|+C

71. a2+u2u2du=a2+u2u+ln(u+a2+u2)+C

72. dua2+u2=ln(u+a2+u2)+C

73. u2a2+u2du=u2(a2+u2)a22ln(u+a2+u2)+C

74. duua2+u2=1aln|a2+u2+au|+C

75. duu2a2+u2=a2+u2a2u+C

76. du(a2+u2)3/2=ua2a2+u2+C

Integrals Involving u2a2, a > 0

77. u2a2du=u2u2a2a22ln|u+u2a2|+C

78. u2u2a2du=u8(2u2a2)u2a2a48ln|u+u2a2|+C

79. u2a2udu=u2a2aarccosa|u|+C

80. u2a2u2du=u2a2u+ln|u+u2a2|+C

81. duu2a2=ln|u+u2a2|+C

82. u2u2a2du=u2u2a2+a22ln|u+u2a2|+C

83. duu2u2a2=u2a2a2u+C

84. du(u2a2)3/2=ua2u2a2+C

Integrals Involving a2u2, a > 0

85. a2u2du=u2a2u2+a22arcsinua+C

86. u2a2u2du=u8(2u2a2)a2u2+a48arcsinua+C

87. a2u2udu=a2u2aln|a+a2u2u|+C

88. a2u2u2du=1ua2u2arcsinua+C

89. u2a2u2du=12(ua2u2+a2arcsinua)+C

90. duua2u2=1aln|a+a2u2u|+C

91. duu2a2u2=1a2ua2u2+C

92. (a2u2)3/2du=u8(2u25a2)a2u2+3a48arcsinua+C

93. du(a2u2)3/2=ua2a2u2+C

Integrals Involving 2auu2, a > 0

94. 2auu2du=ua22auu2+a22arccos(aua)+C

95. du2auu2=arccos(aua)+C

96. u2auu2du=2u2au3a262auu2+a32arccos(aua)+C

97. duu2auu2=2auu2au+C

Integrals Involving a + bu, a ≠ 0

98. ua+budu=1b2(a+bualn|a+bu|)+C

99. u2a+budu=12b3[(a+bu)24a(a+bu)+2a2ln|a+bu|]+C

100. duu(a+bu)=1aln|ua+bu|+C

101. duu2(a+bu)=1au+ba2ln|a+buu|+C

102. u(a+bu)2du=ab2(a+bu)+1b2ln|a+bu|+C

103. uu(a+bu)2du=1a(a+bu)1a2ln|a+buu|+C

104. u2(a+bu)2du=1b3(a+bua2a+bu2aln|a+bu|)+C

105. ua+budu=215b2(3bu2a)(a+bu)3/2+C

106. ua+budu=23b2(bu2a)a+bu+C

107. u2a+budu=215b3(8a2+3b2u24abu)a+bu+C

108. duua+bu={1aln|a+buaa+bu+a|+C,ifa>02aarctana+bua+C,ifa<0

109. a+buudu=2a+bu+aduua+bu

110. a+buu2du=a+buu+b2duua+bu

111. una+budu=2b(2n+3)[un(a+bu)3/2naun1a+budu]

112. una+budu=2una+bub(2n+1)2nab(2n+1)un1a+budu

113. duuna+bu=a+bua(n1)un1b(2n3)2a(n1)duun1a+bu

Contributors

  • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

  • Introduction paragraphs and inverse trig notation changes by Paul Seeburger (Monroe Community College)

6.3: Table of Integrals is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?