6.3: Table of Integrals
- Last updated
- May 5, 2023
- Save as PDF
- Page ID
- 126700
( \newcommand{\kernel}{\mathrm{null}\,}\)
For this course, all work must be shown to obtain most of these integral forms. Of the integration formulas listed below, the only ones that can be applied without further work are #1 - 10, 15 - 17, and 49 and 50. And even these will require work to be shown if a substitution is involved.
All others may be helpful for checking your final answers, but cannot be used to skip the necessary work to show you understand how to use the integration techniques taught in this course.
As you look through these formulas, you should be able to recognize which integration technique was needed to obtain the general formula. It may be very useful for you to try to obtain the general formula yourself using the techniques we learn in this course.
Basic Integrals
1. ∫undu=un+1n+1+C,n≠−1
2. ∫duu=ln|u|+C
3. ∫eudu=eu+C
4. ∫audu=aulna+C
5. ∫sinudu=−cosu+C
6. ∫cosudu=sinu+C
7. ∫sec2udu=tanu+C
8. ∫csc2udu=−cotu+C
9. ∫secutanudu=secu+C
10. ∫cscucotudu=−cscu+C
11. ∫tanudu=ln|secu|+C
12. ∫cotudu=ln|sinu|+C
13. ∫secudu=ln|secu+tanu|+C
14. ∫cscudu=ln|cscu−cotu|+C
15. ∫du√a2−u2=arcsin(ua)+C
16. ∫dua2+u2=1aarctan(ua)+C
17. ∫duu√u2−a2=1aarcsec(|u|a)+C
Trigonometric Integrals
18. ∫sin2udu=12u−14sin2u+C
19. ∫cos2udu=12u+14sin2u+C
20. ∫tan2udu=tanu−u+C
21. ∫cot2udu=−cotu−u+C
22. ∫sin3udu=−13(2+sin2u)cosu+C
23. ∫cos3udu=13(2+cos2u)sinu+C
24. ∫tan3udu=12tan2u+ln|cosu|+C
25. ∫cot3udu=−12cot2u−ln|sinu|+C
26. ∫sec3udu=12secutanu+12ln|secu+tanu|+C
27. ∫csc3udu=−12cscucotu+12ln|cscu−cotu|+C
28. ∫sinnudu=−1nsinn−1ucosu+n−1n∫sinn−2udu
29. ∫cosnudu=1ncosn−1usinu+n−1n∫cosn−2udu
30. ∫tannudu=1n−1tann−1u−∫tann−2udu
31. ∫cotnudu=−1n−1cotn−1u−∫cotn−2udu
32. ∫secnudu=1n−1tanusecn−2u+n−2n−1∫secn−2udu
33. ∫cscnudu=−1n−1cotucscn−2u+n−2n−1∫cscn−2udu
34. ∫sinausinbudu=sin(a−b)u2(a−b)−sin(a+b)u2(a+b)+C
35. ∫cosaucosbudu=sin(a−b)u2(a−b)+sin(a+b)u2(a+b)+C
36. ∫sinaucosbudu=−cos(a−b)u2(a−b)−cos(a+b)u2(a+b)+C
37. ∫usinudu=sinu−ucosu+C
38. ∫ucosudu=cosu+usinu+C
39. ∫unsinudu=−uncosu+n∫un−1cosudu
40. ∫uncosudu=unsinu−n∫un−1sinudu
41. ∫sinnucosmudu= Use the methods for powers of sine and cosine
Exponential and Logarithmic Integrals
42. ∫ueaudu=1a2(au−1)eau+C
43. ∫uneaudu=1auneau−na∫un−1eaudu
44. ∫eausinbudu=eaua2+b2(asinbu−bcosbu)+C
45. ∫eaucosbudu=eaua2+b2(acosbu+bsinbu)+C
46. ∫lnudu=ulnu−u+C
47. ∫unlnudu=un+1(n+1)2[(n+1)lnu−1]+C
48. ∫1ulnudu=ln|lnu|+C
Hyperbolic Integrals
49. ∫sinhudu=coshu+C
50. ∫coshudu=sinhu+C
51. ∫tanhudu=lncoshu+C
52. ∫cothudu=ln|sinhu|+C
53. ∫sechudu=arctan|sinhu|+C
54. ∫cschudu=ln∣tanh12u∣+C
55. ∫sech2udu=tanhu+C
56. ∫csch2udu=−cothu+C
57. ∫sechutanhudu=−sechu+C
58. ∫cschucothudu=−cschu+C
Inverse Trigonometric Integrals
59. ∫arcsinudu=uarcsinu+√1−u2+C
60. ∫arccosudu=uarccosu−√1−u2+C
61. ∫arctanudu=uarctanu−12ln(1+u2)+C
62. ∫uarcsinudu=2u2−14arcsinu+u√1−u24+C
63. ∫uarccosudu=2u2−14arccosu−u√1−u24+C
64. ∫uarctanudu=u2+12arctanu−u2+C
65. ∫unarcsinudu=1n+1[un+1arcsinu−∫un+1du√1−u2],n≠−1
66. ∫unarccosudu=1n+1[un+1arccosu+∫un+1du√1−u2],n≠−1
67. ∫unarctanudu=1n+1[un+1arctanu−∫un+1du1+u2],n≠−1
Integrals Involving a2 + u2, a > 0
68. ∫√a2+u2du=u2√a2+u2+a22ln(u+√a2+u2)+C
69. ∫u2√a2+u2du=u8(a2+2u2)√a2+u2−a48ln(u+√a2+u2)+C
70. ∫√a2+u2udu=√a2+u2−aln|a+√a2+u2u|+C
71. ∫√a2+u2u2du=−√a2+u2u+ln(u+√a2+u2)+C
72. ∫du√a2+u2=ln(u+√a2+u2)+C
73. ∫u2√a2+u2du=u2(√a2+u2)−a22ln(u+√a2+u2)+C
74. ∫duu√a2+u2=−1aln|√a2+u2+au|+C
75. ∫duu2√a2+u2=−√a2+u2a2u+C
76. ∫du(a2+u2)3/2=ua2√a2+u2+C
Integrals Involving u2 − a2, a > 0
77. ∫√u2−a2du=u2√u2−a2−a22ln|u+√u2−a2|+C
78. ∫u2√u2−a2du=u8(2u2−a2)√u2−a2−a48ln|u+√u2−a2|+C
79. ∫√u2−a2udu=√u2−a2−aarccosa|u|+C
80. ∫√u2−a2u2du=−√u2−a2u+ln|u+√u2−a2|+C
81. ∫du√u2−a2=ln|u+√u2−a2|+C
82. ∫u2√u2−a2du=u2√u2−a2+a22ln|u+√u2−a2|+C
83. ∫duu2√u2−a2=√u2−a2a2u+C
84. ∫du(u2−a2)3/2=−ua2√u2−a2+C
Integrals Involving a2 − u2, a > 0
85. ∫√a2−u2du=u2√a2−u2+a22arcsinua+C
86. ∫u2√a2−u2du=u8(2u2−a2)√a2−u2+a48arcsinua+C
87. ∫√a2−u2udu=√a2−u2−aln|a+√a2−u2u|+C
88. ∫√a2−u2u2du=−1u√a2−u2−arcsinua+C
89. ∫u2√a2−u2du=12(−u√a2−u2+a2arcsinua)+C
90. ∫duu√a2−u2=−1aln|a+√a2−u2u|+C
91. ∫duu2√a2−u2=−1a2u√a2−u2+C
92. ∫(a2−u2)3/2du=−u8(2u2−5a2)√a2−u2+3a48arcsinua+C
93. ∫du(a2−u2)3/2=−ua2√a2−u2+C
Integrals Involving 2au − u2, a > 0
94. ∫√2au−u2du=u−a2√2au−u2+a22arccos(a−ua)+C
95. ∫du√2au−u2=arccos(a−ua)+C
96. ∫u√2au−u2du=2u2−au−3a26√2au−u2+a32arccos(a−ua)+C
97. ∫duu√2au−u2=−√2au−u2au+C
Integrals Involving a + bu, a ≠ 0
98. ∫ua+budu=1b2(a+bu−aln|a+bu|)+C
99. ∫u2a+budu=12b3[(a+bu)2−4a(a+bu)+2a2ln|a+bu|]+C
100. ∫duu(a+bu)=1aln|ua+bu|+C
101. ∫duu2(a+bu)=−1au+ba2ln|a+buu|+C
102. ∫u(a+bu)2du=ab2(a+bu)+1b2ln|a+bu|+C
103. ∫uu(a+bu)2du=1a(a+bu)−1a2ln|a+buu|+C
104. ∫u2(a+bu)2du=1b3(a+bu−a2a+bu−2aln|a+bu|)+C
105. ∫u√a+budu=215b2(3bu−2a)(a+bu)3/2+C
106. ∫u√a+budu=23b2(bu−2a)√a+bu+C
107. ∫u2√a+budu=215b3(8a2+3b2u2−4abu)√a+bu+C
108. ∫duu√a+bu={1√aln|√a+bu−√a√a+bu+√a|+C,ifa>0√2√−aarctan√a+bu−a+C,ifa<0
109. ∫√a+buudu=2√a+bu+a∫duu√a+bu
110. ∫√a+buu2du=−√a+buu+b2∫duu√a+bu
111. ∫un√a+budu=2b(2n+3)[un(a+bu)3/2−na∫un−1√a+budu]
112. ∫un√a+budu=2un√a+bub(2n+1)−2nab(2n+1)∫un−1√a+budu
113. ∫duun√a+bu=−√a+bua(n−1)un−1−b(2n−3)2a(n−1)∫duun−1√a+bu
Contributors
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.
- Introduction paragraphs and inverse trig notation changes by Paul Seeburger (Monroe Community College)