Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Workbench/Algebra_and_Trigonometry_2e_(OpenStax)/09%3A_Trigonometric_Identities_and_Equations/9.05%3A_Sum-to-Product_and_Product-to-Sum_Formulas
    From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine. The product-to-sum formulas can rewrite products of sines, produc...From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine. The product-to-sum formulas can rewrite products of sines, products of cosines, and products of sine and cosine as sums or differences of sines and cosines.  We can also derive the sum-to-product identities from the product-to-sum identities using substitution. The sum-to-product formulas are used to rewrite sum or difference as products of sines and cosines.
  • https://math.libretexts.org/Courses/Reedley_College/Trigonometry/03%3A_Trigonometric_Identities_and_Equations/3.04%3A_Sum-to-Product_and_Product-to-Sum_Formulas
    From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine. The product-to-sum formulas can rewrite products of sines, produc...From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine. The product-to-sum formulas can rewrite products of sines, products of cosines, and products of sine and cosine as sums or differences of sines and cosines.  We can also derive the sum-to-product identities from the product-to-sum identities using substitution. The sum-to-product formulas are used to rewrite sum or difference as products of sines and cosines.
  • https://math.libretexts.org/Courses/Prince_Georges_Community_College/MAT_1350%3A_Precalculus_Part_I/09%3A_Trigonometric_Identities_and_Equations/9.04%3A_Sum-to-Product_and_Product-to-Sum_Formulas
    From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine. The product-to-sum formulas can rewrite products of sines, produc...From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas for sine and cosine. The product-to-sum formulas can rewrite products of sines, products of cosines, and products of sine and cosine as sums or differences of sines and cosines.  We can also derive the sum-to-product identities from the product-to-sum identities using substitution. The sum-to-product formulas are used to rewrite sum or difference as products of sines and cosines.

Support Center

How can we help?