Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 10 results
  • https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Nguyen)/06%3A_Appendices/6.01%3A_Trigonometric_Identities
    cos2x+sin2x=1 sec2xtan2x=1 sin2x=2sinxcosx cos2x=cos2xsin2x=12sin2x=2cos2x1 cos2x=1+cos2x2 \(\sin^2 ...cos2x+sin2x=1 sec2xtan2x=1 sin2x=2sinxcosx cos2x=cos2xsin2x=12sin2x=2cos2x1 cos2x=1+cos2x2 sin2x=1cos2x2 sin(x)=sinx cos(x)=cosx tan(x)=tanx sin(x±π2)=±cosx cos(x±π2)=sinx sin(πx)=sinx cos(πx)=cosx tan(πx)=tanx
  • https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Everett)/06%3A_Appendices/6.01%3A_Trigonometric_Identities
    cos2x+sin2x=1 sec2xtan2x=1 sin2x=2sinxcosx cos2x=cos2xsin2x=12sin2x=2cos2x1 cos2x=1+cos2x2 \(\sin^2 ...cos2x+sin2x=1 sec2xtan2x=1 sin2x=2sinxcosx cos2x=cos2xsin2x=12sin2x=2cos2x1 cos2x=1+cos2x2 sin2x=1cos2x2 sin(x)=sinx cos(x)=cosx tan(x)=tanx sin(x±π2)=±cosx cos(x±π2)=sinx sin(πx)=sinx cos(πx)=cosx tan(πx)=tanx
  • https://math.libretexts.org/Courses/Penn_State_University_Greater_Allegheny/Math_140%3A_Calculus_1_(Gaydos)/06%3A_Appendices/6.04%3A_Trigonometric_Identities
    cos2x+sin2x=1 sec2xtan2x=1 sin2x=2sinxcosx cos2x=cos2xsin2x=12sin2x=2cos2x1 cos2x=1+cos2x2 \(\sin^2 ...cos2x+sin2x=1 sec2xtan2x=1 sin2x=2sinxcosx cos2x=cos2xsin2x=12sin2x=2cos2x1 cos2x=1+cos2x2 sin2x=1cos2x2 \sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β) \sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β) \sin (-x) = -\sin x \cos(-x) = \cos x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x
  • https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Tran)/06%3A_Appendices/6.01%3A_Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
  • https://math.libretexts.org/Courses/Coastline_College/Math_C185%3A_Calculus_II_(Tran)/08%3A_Appendices/8.01%3A_Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
  • https://math.libretexts.org/Under_Construction/Purgatory/Differential_Equations_and_Linear_Algebra_(Zook)/21%3A_Appendices/21.01%3A_A.1-_Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β) \sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β) \sin (-x) = -\sin x \cos(-x) = \cos x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_210_Calculus_I_(Seeburger)/Appendices/a0-Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β) \sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β) \sin (-x) = -\sin x \cos(-x) = \cos x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x
  • https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/16%3A_Appendices/16.00%3A_Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
  • https://math.libretexts.org/Courses/Reedley_College/Differential_Equations_and_Linear_Algebra_(Zook)/16%3A_Appendices/16.01%3A_Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
  • https://math.libretexts.org/Courses/Coastline_College/Math_C185%3A_Calculus_II_(Everett)/08%3A_Appendices/8.01%3A_Trigonometric_Identities
    \cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x

Support Center

How can we help?