Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Nguyen)/06%3A_Appendices/6.01%3A_Trigonometric_Identitiescos2x+sin2x=1 sec2x−tan2x=1 sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 cos2x=1+cos2x2 \(\sin^2 ...cos2x+sin2x=1 sec2x−tan2x=1 sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 cos2x=1+cos2x2 sin2x=1−cos2x2 sin(−x)=−sinx cos(−x)=cosx tan(−x)=−tanx sin(x±π2)=±cosx cos(x±π2)=∓sinx sin(π−x)=sinx cos(π−x)=−cosx tan(π−x)=−tanx
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Everett)/06%3A_Appendices/6.01%3A_Trigonometric_Identitiescos2x+sin2x=1 sec2x−tan2x=1 sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 cos2x=1+cos2x2 \(\sin^2 ...cos2x+sin2x=1 sec2x−tan2x=1 sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 cos2x=1+cos2x2 sin2x=1−cos2x2 sin(−x)=−sinx cos(−x)=cosx tan(−x)=−tanx sin(x±π2)=±cosx cos(x±π2)=∓sinx sin(π−x)=sinx cos(π−x)=−cosx tan(π−x)=−tanx
- https://math.libretexts.org/Courses/Penn_State_University_Greater_Allegheny/Math_140%3A_Calculus_1_(Gaydos)/06%3A_Appendices/6.04%3A_Trigonometric_Identitiescos2x+sin2x=1 sec2x−tan2x=1 sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 cos2x=1+cos2x2 \(\sin^2 ...cos2x+sin2x=1 sec2x−tan2x=1 sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 cos2x=1+cos2x2 sin2x=1−cos2x2 \sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β) \sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β) \sin (-x) = -\sin x \cos(-x) = \cos x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x
- https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Tran)/06%3A_Appendices/6.01%3A_Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
- https://math.libretexts.org/Courses/Coastline_College/Math_C185%3A_Calculus_II_(Tran)/08%3A_Appendices/8.01%3A_Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
- https://math.libretexts.org/Under_Construction/Purgatory/Differential_Equations_and_Linear_Algebra_(Zook)/21%3A_Appendices/21.01%3A_A.1-_Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β) \sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β) \sin (-x) = -\sin x \cos(-x) = \cos x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x
- https://math.libretexts.org/Courses/Monroe_Community_College/MTH_210_Calculus_I_(Seeburger)/Appendices/a0-Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin(α + β) = \sin(α) \cos(β) + \cos(α) \sin(β) \sin(α - β) = \sin(α) \cos(β) - \cos(α) \sin(β) \sin (-x) = -\sin x \cos(-x) = \cos x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x
- https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/16%3A_Appendices/16.00%3A_Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
- https://math.libretexts.org/Courses/Reedley_College/Differential_Equations_and_Linear_Algebra_(Zook)/16%3A_Appendices/16.01%3A_Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x
- https://math.libretexts.org/Courses/Coastline_College/Math_C185%3A_Calculus_II_(Everett)/08%3A_Appendices/8.01%3A_Trigonometric_Identities\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \(\sin^2 ...\cos^2 x + \sin^2 x = 1 \sec^2 x - \tan^2 x = 1 \sin 2x = 2 \sin x \cos x \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 \cos^2 x = \dfrac{1+ \cos 2x}{2} \sin^2 x = \dfrac{1- \cos 2x}{2} \sin (-x) = -\sin x \cos(-x) = \cos x \tan (-x) = -\tan x \sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x \cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x \sin(\pi - x) = \sin x \cos(\pi - x) = -\cos x \tan(\pi - x) = -\tan x