8.1: Trigonometric Identities Last updated Apr 28, 2023 Save as PDF 8: Appendices 8.2: Review of Derivative Rules Page ID126360 ( \newcommand{\kernel}{\mathrm{null}\,}\) Pythagorean Identities cos2x+sin2x=1 sec2x−tan2x=1 Double-Angle Identities sin2x=2sinxcosx cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 Half-Angle Identities cos2x=1+cos2x2 sin2x=1−cos2x2 Angle Sum and Difference Identities sin(α+β)=sin(α)cos(β)+cos(α)sin(β) sin(α−β)=sin(α)cos(β)−cos(α)sin(β) cos(α+β)=cos(α)cos(β)−sin(α)sin(β) cos(α−β)=cos(α)cos(β)+sin(α)sin(β) Angle Reflections and Shifts sin(−x)=−sinx cos(−x)=cosx tan(−x)=−tanx sin(x±π2)=±cosx cos(x±π2)=∓sinx Angle Supplement Identities sin(π−x)=sinx cos(π−x)=−cosx tan(π−x)=−tanx Periodicity Identities sin(x+2π)=sinx cos(x+2π)=cosx tan(x+π)=tanx