Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 14 results
  • https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/02%3A_Algebra_Support/2.19%3A_Simplifying_Rational_Exponents
    Remember the Power Property tells us to multiply the exponents and so \left(a^{\frac{1}{n}}\right)^{m} and \left(a^{m}\right)^{\frac{1}{n}} both equal a^{\frac{m}{n}}. \(a^{\frac{m}{n}}=\l...Remember the Power Property tells us to multiply the exponents and so \left(a^{\frac{1}{n}}\right)^{m} and \left(a^{m}\right)^{\frac{1}{n}} both equal a^{\frac{m}{n}}. a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m} \quad \text { and } \quad a^{\frac{m}{n}}=\left(a^{m}\right)^{^{\frac{1}{n}}}=\sqrt[n]{a^{m}} We want to use a^{\frac{m}{n}}=\sqrt[n]{a^{m}} to write each radical in the form a^{\frac{m}{n}}
  • https://math.libretexts.org/Courses/Coastline_College/Math_C045%3A_Beginning_and_Intermediate_Algebra_(Tran)/10%3A_Roots_and_Radicals/10.04%3A_Simplify_Rational_Exponents
    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.
  • https://math.libretexts.org/Courses/Kansas_State_University/Your_Guide_to_Intermediate_Algebra/05%3A_Everything_else_you_need_to_know/5.01%3A_Simplify_Rational_Exponents
    We notice that if a>0, that is a positive real number, then \sqrt[n]{a^{n}}=a for n\geq 2 no matter if n is even or odd. Say we have a fraction \dfrac{1}{\sqrt{2}} and we want to make ...We notice that if a>0, that is a positive real number, then \sqrt[n]{a^{n}}=a for n\geq 2 no matter if n is even or odd. Say we have a fraction \dfrac{1}{\sqrt{2}} and we want to make the denominator into a rational, that is we want to rationalize the denominator. So we get (a^n)^m=a^{n\cdot m}=a^{m\cdot n}=(a^m)^n. The same thing goes for to the power of 3, (a\cdot b)^3=a\cdot b \cdot a\cdot b \cdot a\cdot b=a\cdot a \cdot a\cdot b \cdot b\cdot b=a^3\cdot b^3.
  • https://math.libretexts.org/Courses/City_University_of_New_York/MAT1275_Basic/06%3A_Roots_and_Radicals/6.03%3A_Simplify_Rational_Exponents
    a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m} \quad \text { and } \quad a^{\frac{m}{n}}=\left(a^{m}\right)^{^{\frac{1}{n}}}=\sqrt[n]{a^{m}} a. \(\dfrac{a^{\frac{3}{4}} \cdot a...a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m} \quad \text { and } \quad a^{\frac{m}{n}}=\left(a^{m}\right)^{^{\frac{1}{n}}}=\sqrt[n]{a^{m}} a. \dfrac{a^{\frac{3}{4}} \cdot a^{-\frac{1}{4}}}{a^{-\frac{10}{4}}} b. \left(\dfrac{27 b^{\frac{2}{3}} c^{-\frac{5}{2}}}{b^{-\frac{7}{3}} c^{\frac{1}{2}}}\right)^{\frac{1}{3}}
  • https://math.libretexts.org/Courses/Las_Positas_College/Foundational_Mathematics/17%3A_Radical_Expressions_and_Functions/17.04%3A_Simplify_Rational_Exponents
    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.
  • https://math.libretexts.org/Courses/Nova_Scotia_Community_College/MATH_1043/01%3A_Numerical_Literacy/1.05%3A_Expressions/1.5.04%3A_Unit_1_-_Chapter_6-_Roots_and_Radicals/1.5.4.03%3A_Simplify_Rational_Exponents
    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.
  • https://math.libretexts.org/Courses/Borough_of_Manhattan_Community_College/MAT_206.5/Chapter_3A%3A_Algebra_Topics/3A.10%3A_Rational_Exponents
    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.
  • https://math.libretexts.org/Courses/City_University_of_New_York/College_Algebra_and_Trigonometry-_Expressions_Equations_and_Graphs/01%3A_Expressions/1.04%3A_Radical_Expressions/1.4.03%3A_Rational_Exponents
    Remember the Power Property tells us to multiply the exponents and so \left(a^{\frac{1}{n}}\right)^{m} and \left(a^{m}\right)^{\frac{1}{n}} both equal a^{\frac{m}{n}}. \(a^{\frac{m}{n}}=\l...Remember the Power Property tells us to multiply the exponents and so \left(a^{\frac{1}{n}}\right)^{m} and \left(a^{m}\right)^{\frac{1}{n}} both equal a^{\frac{m}{n}}. a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m} \quad \text { and } \quad a^{\frac{m}{n}}=\left(a^{m}\right)^{^{\frac{1}{n}}}=\sqrt[n]{a^{m}} Give and example of the rules (ab)^n=a^nb^n and a^na^m=a^{n+m} with rational exponents.
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_104_Intermediate_Algebra/8%3A_Roots_and_Radicals/8.2%3A_Simplify_Rational_Exponents
    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.
  • https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.02%3A_Algebra_Support/1.2.19%3A_Simplifying_Rational_Exponents
    Remember the Power Property tells us to multiply the exponents and so \left(a^{\frac{1}{n}}\right)^{m} and \left(a^{m}\right)^{\frac{1}{n}} both equal a^{\frac{m}{n}}. \(a^{\frac{m}{n}}=\l...Remember the Power Property tells us to multiply the exponents and so \left(a^{\frac{1}{n}}\right)^{m} and \left(a^{m}\right)^{\frac{1}{n}} both equal a^{\frac{m}{n}}. a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m} \quad \text { and } \quad a^{\frac{m}{n}}=\left(a^{m}\right)^{^{\frac{1}{n}}}=\sqrt[n]{a^{m}} We want to use a^{\frac{m}{n}}=\sqrt[n]{a^{m}} to write each radical in the form a^{\frac{m}{n}}
  • https://math.libretexts.org/Courses/Highline_College/Math_098%3A_Intermediate_Algebra_for_Calculus/04%3A_Chapter_4_-_Radicals/4.03%3A_Simplify_Rational_Exponents
    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.

Support Center

How can we help?