Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.S%3A_Functions_(Summary)
    Let \(A\), \(B\) and \(C\) be nonempty sets and let \(f: A \to B\) and \(g: B \to C\). \(\bullet\) For every \(a \in A\) and every \(b, c \in B\), if \((a, b) \in f\) and \((a, c) \in f\), then \(b = ...Let \(A\), \(B\) and \(C\) be nonempty sets and let \(f: A \to B\) and \(g: B \to C\). \(\bullet\) For every \(a \in A\) and every \(b, c \in B\), if \((a, b) \in f\) and \((a, c) \in f\), then \(b = c\). Then \(f^{-1}: B \to A\) is a function, and for every \(a \in A\) and \(b \in B\), Let \(f: S \to T\) be a function and let \(A\( be a subset of \(S\) and let \(C\) be a subset of \(T\).

Support Center

How can we help?