Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Courses/Laney_College/Math_3A%3A_Calculus_1_(Fall_2022)/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .
  • https://math.libretexts.org/Courses/Chabot_College/MTH_1%3A_Calculus_I/03%3A_Derivatives/3.01%3A_Introducing_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. The derivative of a function f(x) is the function whose value at x is f′(x).
  • https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/03%3A_Derivatives/3.02%3A_Defining_the_Derivative
    The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with incre...The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .

Support Center

How can we help?