Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Laney_College/Math_3A%3A_Calculus_1_(Fall_2022)/04%3A_Applications_of_Derivatives/4.06%3A_Derivatives_and_the_Shape_of_a_GraphUsing the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the sec...Using the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a graph by describing whether the graph of a function curves upward or curves downward.
- https://math.libretexts.org/Courses/Chabot_College/MTH_1%3A_Calculus_I/04%3A_Applications_of_Derivatives/4.03%3A_Graphing_FunctionsUsing the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the sec...Using the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a graph by describing whether the graph of a function curves upward or curves downward.
- https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/04%3A_Applications_of_Derivatives/4.06%3A_Derivatives_and_the_Shape_of_a_GraphUsing the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the sec...Using the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a graph by describing whether the graph of a function curves upward or curves downward.
- https://math.libretexts.org/Courses/Reedley_College/Calculus_I_(Casteel)/04%3A_Applications_of_Derivatives/4.04%3A_Derivatives_and_the_Shape_of_a_GraphUsing the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the sec...Using the results from the previous section, we are now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also see how the second derivative provides information about the shape of a graph by describing whether the graph of a function curves upward or curves downward.