\(\displaystyle \lim_{(x,y)→(a,b)}\left[\dfrac{2f(x,y) - 4g(x,y)}{f(x,y) - g(x,y)}\right] = \frac{2\left(\displaystyle \lim_{(x,y)→(a,b)}f(x,y)\right) - 4 \left(\displaystyle \lim_{(x,y)→(a,b)}g(x,y)\...lim(x,y)→(a,b)[2f(x,y)−4g(x,y)f(x,y)−g(x,y)]=2(lim(x,y)→(a,b)f(x,y))−4(lim(x,y)→(a,b)g(x,y))lim(x,y)→(a,b)f(x,y)−lim(x,y)→(a,b)g(x,y)=2(5)−4(2)5−2=23 4) Show that the limit lim(x,y)→(0,0)5x2yx2+y2 exists and is the same along the paths: y-axis and x-axis, and along y=x.
\(\displaystyle \lim_{(x,y)→(a,b)}\left[\dfrac{2f(x,y) - 4g(x,y)}{f(x,y) - g(x,y)}\right] = \frac{2\left(\displaystyle \lim_{(x,y)→(a,b)}f(x,y)\right) - 4 \left(\displaystyle \lim_{(x,y)→(a,b)}g(x,y)\...lim(x,y)→(a,b)[2f(x,y)−4g(x,y)f(x,y)−g(x,y)]=2(lim(x,y)→(a,b)f(x,y))−4(lim(x,y)→(a,b)g(x,y))lim(x,y)→(a,b)f(x,y)−lim(x,y)→(a,b)g(x,y)=2(5)−4(2)5−2=23 4) Show that the limit lim(x,y)→(0,0)5x2yx2+y2 exists and is the same along the paths: y-axis and x-axis, and along y=x.
\(\displaystyle \lim_{(x,y)→(a,b)}\left[\dfrac{2f(x,y) - 4g(x,y)}{f(x,y) - g(x,y)}\right] = \frac{2\left(\displaystyle \lim_{(x,y)→(a,b)}f(x,y)\right) - 4 \left(\displaystyle \lim_{(x,y)→(a,b)}g(x,y)\...lim(x,y)→(a,b)[2f(x,y)−4g(x,y)f(x,y)−g(x,y)]=2(lim(x,y)→(a,b)f(x,y))−4(lim(x,y)→(a,b)g(x,y))lim(x,y)→(a,b)f(x,y)−lim(x,y)→(a,b)g(x,y)=2(5)−4(2)5−2=23 4) Show that the limit lim(x,y)→(0,0)5x2yx2+y2 exists and is the same along the paths: y-axis and x-axis, and along y=x.