Loading [MathJax]/extensions/TeX/mhchem.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 1 results
  • https://math.libretexts.org/Courses/Grayson_College/Prealgebra/Book%3A_Prealgebra_(OpenStax)/11%3A_Graphs/11.05%3A_Graphing_with_Intercepts_(Part_1)
    Every linear equation has a unique line that represents all the solutions of the equation. At first glance, two lines might appear different since they would have different points labeled. But if all ...Every linear equation has a unique line that represents all the solutions of the equation. At first glance, two lines might appear different since they would have different points labeled. But if all the work was done correctly, the lines will be exactly the same line. One way to recognize that they are indeed the same line is to focus on where the line crosses the axes. To graph a linear equation by plotting points, you can use the intercepts as two of your three points.

Support Center

How can we help?