Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 59 results
  • https://math.libretexts.org/Courses/Coastline_College/Math_C180%3A_Calculus_I_(Nguyen)/02%3A_Limits/2.02%3A_A_Preview_of_Calculus
    As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in th...As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent to a curve at a point; and (2) the area problem, or how to determine the area under a curve.
  • https://math.libretexts.org/Courses/Quinebaug_Valley_Community_College/MAT186%3A_Pre-calculus_-_Walsh/05%3A_Trigonometric_Functions/5.03%3A_The_Other_Trigonometric_Functions
    Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and co...Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.
  • https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/Interactive_Calculus_Q1/02%3A_Limits/2.02%3A_A_Preview_of_Calculus
    As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in th...As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent to a curve at a point; and (2) the area problem, or how to determine the area under a curve.
  • https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_1e_(OpenStax)/13%3A_Trigonometric_Functions/13.03%3A_The_Other_Trigonometric_Functions
    Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and co...Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.
  • https://math.libretexts.org/Courses/Borough_of_Manhattan_Community_College/MAT_206.5/06%3A_Trigonometric_Functions/6.04%3A_The_Other_Trigonometric_Functions
    Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and co...Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.
  • https://math.libretexts.org/Courses/Borough_of_Manhattan_Community_College/MAT_206_Precalculus/5%3A_Trigonometric_Functions/5.3%3A_The_Other_Trigonometric_Functions
    Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and co...Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.
  • https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/02%3A_Learning_Limits/2.01%3A_Tangent_Lines_and_Velocity
    We begin our exploration of calculus by reconnecting with a topic from our early days in algebra - slope. The concept of slope is fundamentally important in calculus and this section, along with our o...We begin our exploration of calculus by reconnecting with a topic from our early days in algebra - slope. The concept of slope is fundamentally important in calculus and this section, along with our old friend "slope," allows a gentle introduction to a monumentally important subject in mathematics and physics.
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_210_Calculus_I_(Professor_Dean)/Chapter_2_Limits/2.1%3A_The_Idea_of_Limits
    As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area between the graph of f(x) and the x-axis over the interval [a,b]. A ta...As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area between the graph of f(x) and the x-axis over the interval [a,b]. A tangent line to the graph of a function at a point (a,f(a)) is the line that secant lines through (a,f(a)) approach as they are taken through points on the function with x-values that approach a; the slope of the tangent line to a graph at a measures the rate of change of the function at a
  • https://math.libretexts.org/Courses/Las_Positas_College/Math_39%3A_Trigonometry/01%3A_Trigonometric_Functions/1.04%3A_The_Other_Trigonometric_Functions
    Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and co...Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.
  • https://math.libretexts.org/Courses/Reedley_College/Calculus_I_(Casteel)/02%3A_Limits/2.01%3A_A_Preview_of_Calculus
    As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in th...As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent to a curve at a point; and (2) the area problem, or how to determine the area under a curve.
  • https://math.libretexts.org/Under_Construction/Purgatory/Remixer_University/Username%3A_hdagnew@ucdavis.edu/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits/Courses%2F%2FRemixer_University%2F%2FUsername%3A_hdagnew@ucdavis.edu%2F%2FMonroe2%2F%2FChapter_2_Limits%2F%2F2.1%3A_The_Idea_of_Limits
    As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area between the graph of f(x) and the x-axis over the interval [a,b]. A ta...As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area between the graph of f(x) and the x-axis over the interval [a,b]. A tangent line to the graph of a function at a point (a,f(a)) is the line that secant lines through (a,f(a)) approach as they are taken through points on the function with x-values that approach a; the slope of the tangent line to a graph at a measures the rate of change of the function at a

Support Center

How can we help?