5.5: More Complex Initial/Boundary Conditions
- Page ID
- 8346
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)It is not always possible on separation of variables to separate initial or boundary conditions in a condition on one of the two functions. We can either map the problem into simpler ones by using superposition of boundary conditions, a way discussed below, or we can carry around additional integration constants.

Let me give an example of these procedures. Consider a vibrating string attached to two air bearings, gliding along rods 4m apart. You are asked to find the displacement for all times, if the initial displacement, i.e. at \(t=0\)s is one meter and the initial velocity is \(x/t_0~\rm m/s\).
The differential equation and its boundary conditions are easily written down,
\[\begin{aligned} \dfrac{\partial^2}{\partial x^2} u &= \frac{1}{c^2} \dfrac{\partial^2}{\partial t^2} u ,\nonumber\\ \dfrac{\partial}{\partial x} u(0,t) &= \dfrac{\partial}{\partial x} u(4,t) = 0, \;t>0, \nonumber\\ u(x,0) & = 1, \nonumber\\ \dfrac{\partial}{\partial t} u(x,0) & = x /t_0.\end{aligned} \nonumber \]
What happens if I add two solutions \(v\) and \(w\) of the differential equation that satisfy the same BC’s as above but different IC’s,
\[\begin{aligned} v(x,0) =0 &,& \dfrac{\partial}{\partial t} v(x,0) = x /t_0, \nonumber\\ w(x,0) =1 &,& \dfrac{\partial}{\partial t} w(x,0) = 0?\end{aligned} \nonumber \]
- Answer
-
\(u\)=\(v+w\), we can add the BC’s.
If we separate variables, \(u(x,t) = X(x)T(t)\), we find that we obtain easy boundary conditions for \(X(x)\), \[X'(0)=X'(4) = 0, \nonumber \] but we have no such luck for \((t)\). As before we solve the eigenvalue equation for \(X\), and find solutions for \(\lambda_n=\frac{n^2\pi^2}{16}\), \(n=0,1,...\), and \(X_n=\cos(\frac{n\pi}{4}x)\). Since we have no boundary conditions for \(T(t)\), we have to take the full solution,
\[\begin{aligned} T_0(t) &= A_0 + B_0 t, \nonumber\\ T_n(t) &= A_n \cos \frac{n\pi}{4} ct + B_n \sin \frac{n\pi}{4} ct,\end{aligned} \nonumber \] and thus \[u(x,t) = \dfrac{1}{2}(A_0 + B_0 t ) + \sum_{n=1}^\infty \left(A_n \cos \frac{n\pi}{4} ct + B_n \sin \frac{n\pi}{4} ct\right) \cos \frac{n\pi}{4}x. \nonumber \]
Now impose the initial conditions
- \[u(x,0) = 1 = \dfrac{1}{2} A_0 + \sum_{n=1}^\infty A_n \cos \frac{n\pi}{4}x, \nonumber \] which implies \(A_0=2\), \(A_n=0, n>0\).
- \[\dfrac{\partial}{\partial t} u(x,0) = x/t_0 = \dfrac{1}{2} B_0 + \sum_{n=1}^\infty \frac{n\pi c}{4} B_n \cos \frac{n\pi}{4}x. \nonumber \] This is the Fourier sine-series of \(x\), which we have encountered before, and leads to the coefficients \(B_0=4\) and \(B_n= -\frac{64}{n^3\pi^3c}\) if \(n\) is odd and zero otherwise.
So finally \[u(x,t) = (1+2t) -\frac{64}{\pi^3} \sum_{n~\rm odd} \frac{1}{n^3} \sin \frac{n\pi ct}{4 } \cos \frac{n\pi x}{4}. \nonumber \]


