# 5.4: Laplace’s Equation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Figure $$\PageIndex{1}$$: A conducting sheet insulated from above and below.

In a square, heat-conducting sheet, insulated from above and below

$\frac{1}{k}\dfrac{\partial}{\partial t} u = \dfrac{\partial^2}{\partial x^2} u + \dfrac{\partial^2}{\partial y^2} u. \nonumber$

If we are looking for a steady state solution, i.e., we take $$u(x,y,t)=u(x,y)$$ the time derivative does not contribute, and we get Laplace’s equation

$\dfrac{\partial^2}{\partial x^2} u + \dfrac{\partial^2}{\partial y^2} u=0, \nonumber$

an example of an elliptic equation. Let us once again look at a square plate of size $$a\times b$$, and impose the boundary conditions

\begin{align} u(x,0) & = 0, \nonumber\\ u(a,y) & = 0, \nonumber\\ u(x,b) & = x, \nonumber\\ u(0,y) & = 0.\end{align} \nonumber

(This choice is made so as to be able to evaluate Fourier series easily. It is not very realistic!) We once again separate variables,

$u(x,y) = X(x) Y(y), \nonumber$

and define

$\frac{X''}{X} = -\frac{Y''}{Y} = -\lambda. \nonumber$

or explicitly

$X'' = -\lambda X,\;\;Y''=\lambda Y. \nonumber$

With boundary conditions $$X(0)=X(a)=0$$, $$Y(0)=0$$. The 3rd boundary conditions remains to be implemented.

Once again distinguish three cases:

 $$\lambda>0$$

$$X(x) = \sin \alpha_n(x)$$, $$\alpha_n=\frac{n\pi}{a}$$, $$\lambda_n=\alpha_n^2$$. We find

\begin{align} Y(y) &= C_n\sinh \alpha_n y + D_n \cosh \alpha _n y \nonumber\\[4pt] &= C'_n\exp (\alpha_n y) + D'_n \exp(- \alpha _n y).\end{align} \nonumber

Since $$Y(0)=0$$ we find $$D_n=0$$ ($$\sinh(0)=0,\cosh(0)=1$$).

 $$\lambda \leq 0$$

No solutions

So we have

$u(x,y) = \sum_{n=1}^\infty b_n \sin\alpha_n x \sinh \alpha_n y \nonumber$

The one remaining boundary condition gives

$u(x,b) = x = \sum_{n=1}^\infty b_n \sin\alpha_n x \sinh \alpha_n b. \nonumber$

This leads to the Fourier series of $$x$$,

\begin{align} b_n \sinh \alpha_n b &= \frac{2}{a} \int_0^a x \sin \frac{n\pi x}{a}dx \nonumber\\ &= \frac{2 a }{n\pi}(-1)^{n+1}.\end{align} \nonumber

So, in short, we have

$V(x,y) = \frac{2a}{\pi} \sum_{n=1}^\infty (-1)^{n+1} \frac{\sin \frac{n\pi x}{a}\sinh \frac{n\pi y}{a}}{n \sinh \frac{n\pi b}{a}}. \nonumber$

## Exercise $$\PageIndex{1}$$

The dependence on $$x$$ enters through a trigonometric function, and that on $$y$$ through a hyperbolic function. Yet the differential equation is symmetric under interchange of $$x$$ and $$y$$. What happens?