Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

8.0: Prelude to Techniques of Integration

  • Page ID
    3478
  •  

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it will be apparent that the function you wish to integrate is a derivative in some straightforward way. For example, faced with

    \[\int x^{10}\,dx\]

    we realize immediately that the derivative of \(x^{11}\) will supply an \( x^{10}\): \((x^{11})'=11x^{10}\). We don't want the "11'', but constants are easy to alter, because differentiation "ignores'' them in certain circumstances, so

    \[{d\over dx}{1\over 11}{x^{11}}={1\over 11}11{x^{10}}=x^{10}.\]

    From our knowledge of derivatives, we can immediately write down a number of antiderivatives. Here is a list of those most often used:

    \[\displaylines{ \int x^n\,dx={x^{n+1}\over n+1}+C, \quad\hbox{if $n\not=-1$}\cr \int x^{-1}\,dx = \ln |x|+C\cr \int e^x\,dx = e^x+C\cr \int \sin x\,dx = -\cos x+C\cr \int \cos x\,dx = \sin x+C\cr \int \sec^2 x\,dx = \tan x+C\cr \int \sec x\tan x\,dx = \sec x+C\cr \int {1\over1+x^2}\,dx = \arctan x+C\cr \int {1\over \sqrt{1-x^2}}\,dx = \arcsin x+C\cr }\]