Explain how to find the critical points of a function over a closed interval.
Describe how to use critical points to locate absolute extrema over a closed interval.
Given a particular function, we are often interested in determining the largest and smallest values of the function. This information is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance, because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use derivatives to find the largest and smallest values for a function.
Absolute Extrema
Consider the function over the interval . As . Therefore, the function does not have a largest value. However, since for all real numbers and when , the function has a smallest value, , when . We say that is the absolute minimum of and it occurs at . We say that does not have an absolute maximum (Figure ).
Figure : The given function has an absolute minimum of at . The function does not have an absolute maximum.
Definition: Absolute Extrema
Let be a function defined over an interval and let . We say has an absolute maximum on at if for all . We say has an absolute minimum on at if for all . If has an absolute maximum on at or an absolute minimum on at , we say has an absolute extremum on at .
Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute value. An absolute extremum may be positive, negative, or zero. Second, if a function has an absolute extremum over an interval at , the absolute extremum is . The real number is a point in the domain at which the absolute extremum occurs. For example, consider the function over the interval . Since
for all real numbers , we say has an absolute maximum over at . The absolute maximum is . It occurs at , as shown in Figure (b).
A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure shows several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the Extreme Value Theorem, guarantees that a continuous function over a closed, bounded interval has both an absolute maximum and an absolute minimum.
Figure : Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.
Theorem : Extreme Value Theorem
If is a continuous function over the closed, bounded interval , then there is a point in at which has an absolute maximum over and there is a point in at which has an absolute minimum over .
The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be continuous over a closed, bounded interval. If the interval is open or the function has even one point of discontinuity, the function may not have an absolute maximum or absolute minimum over . For example, consider the functions shown in Figure (d), (e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the function in graph (d) is defined over the closed interval , the function is discontinuous at . The function has an absolute maximum over but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval , but is not defined at , and therefore is not continuous over a closed, bounded interval. The function has an absolute minimum over , but does not have an absolute maximum over . These two graphs illustrate why a function over a bounded interval may fail to have an absolute maximum and/or absolute minimum.
Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in determining where absolute extrema occur.
Local Extrema and Critical Points
Consider the function shown in Figure . The graph can be described as two mountains with a valley in the middle. The absolute maximum value of the function occurs at the higher peak, at . However, is also a point of interest. Although is not the largest value of , the value is larger than for all near 0. We say has a local maximum at . Similarly, the function does not have an absolute minimum, but it does have a local minimum at because is less than for near 1.
Figure : This function has two local maxima and one local minimum. The local maximum at is also the absolute maximum.
Definition: Local Extrema
A function has a local maximum at if there exists an open interval containing such that is contained in the domain of and for all . A function has a local minimum at if there exists an open interval containing such that is contained in the domain of and for all . A function has a local extremum at if has a local maximum at or has a local minimum at .
Note that if has an absolute extremum at and is defined over an interval containing , then is also considered a local extremum. If an absolute extremum for a function occurs at an endpoint, we do not consider that to be a local extremum, but instead refer to that as an endpoint extremum.
Given the graph of a function , it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where these extrema occur?
To answer this question, let’s look at Figure again. The local extrema occur at and Notice that at and , the derivative . At , the derivative does not exist, since the function has a corner there. In fact, if has a local extremum at a point , the derivative must satisfy one of the following conditions: either or is undefined. Such a value is known as a critical point and it is important in finding extreme values for functions.
Definition: Critical Points
Let be an interior point in the domain of . We say that is a critical point of if or is undefined.
As mentioned earlier, if has a local extremum at a point , then must be a critical point of . This fact is known as Fermat’s theorem.
Theorem : Fermat’s Theorem
If has a local extremum at and is differentiable at , then
Proof
Suppose has a local extremum at and is differentiable at . We need to show that . To do this, we will show that and , and therefore . Since has a local extremum at , has a local maximum or local minimum at . Suppose has a local maximum at . The case in which has a local minimum at can be handled similarly. There then exists an open interval I such that for all . Since is differentiable at , from the definition of the derivative, we know that
Since this limit exists, both one-sided limits also exist and equal . Therefore,
and
Since is a local maximum, we see that for near . Therefore, for near , but , we have . From Equation we conclude that . Similarly, it can be shown that Therefore,
□
From Fermat’s theorem, we conclude that if has a local extremum at , then either or is undefined. In other words, local extrema can only occur at critical points.
Note this theorem does not claim that a function must have a local extremum at a critical point. Rather, it states that critical points are candidates for local extrema. For example, consider the function . We have when . Therefore, is a critical point. However, is increasing over , and thus does not have a local extremum at . In Figure , we see several different possibilities for critical points. In some of these cases, the functions have local extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the behavior of a function at a critical point.
Figure : (a–e) A function has a critical point at if or is undefined. A function may or may not have a local extremum at a critical point.
Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical point is associated with a local extremum.
Example : Locating Critical Points
For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local extremum at each of the critical points.
Solution
a. The derivative is defined for all real numbers . Therefore, we only need to find the values for where . Since , the critical points are and From the graph of in Figure , we see that has a local maximum at and a local minimum at .
Figure : This function has a local maximum and a local minimum.
b. Using the chain rule, we see the derivative is
Therefore, has critical points when and when . We conclude that the critical points are . From the graph of in Figure , we see that has a local (and absolute) minimum at , but does not have a local extremum at or .
Figure : This function has three critical points: , , and . The function has a local (and absolute) minimum at , but does not have extrema at the other two critical points.
c. By the quotient rule, we see that the derivative is
.
The derivative is defined everywhere. Therefore, we only need to find values for where . Solving , we see that which implies . Therefore, the critical points are . From the graph of in Figure , we see that f has an absolute maximum at and an absolute minimum at Hence, has a local maximum at and a local minimum at . (Note that if has an absolute extremum over an interval at a point that is not an endpoint of , then has a local extremum at
Figure : This function has an absolute maximum and an absolute minimum.
Exercise
Find all critical points for
Hint
Calculate
Answer
Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. As shown in Figure , one or both of these absolute extrema could occur at an endpoint. If an absolute extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local extremum. Therefore, by Fermat's Theorem, the point at which the local extremum occurs must be a critical point. We summarize this result in the following theorem.
Theorem : Location of Absolute Extrema
Let be a continuous function over a closed, bounded interval . The absolute maximum of over and the absolute minimum of over must occur at endpoints of or at critical points of in .
With this idea in mind, let’s examine a procedure for locating absolute extrema.
Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval
Consider a continuous function defined over the closed interval
Evaluate at the endpoints and
Find all critical points of that lie over the interval and evaluate at those critical points.
Compare all values found in (1) and (2). From "Location of Absolute Extrema," the absolute extrema must occur at endpoints or critical points. Therefore, the largest of these values is the absolute maximum of . The smallest of these values is the absolute minimum of .
Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.
Example : Locating Absolute Extrema
For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state where those values occur.
over
over .
Solution
a. Step 1. Evaluate at the endpoints and .
and
Step 2. Since is defined for all real numbers Therefore, there are no critical points where the derivative is undefined. It remains to check where . Since at and is in the interval is a candidate for an absolute extremum of over . We evaluate and find
.
Step 3. We set up the following table to compare the values found in steps 1 and 2.
Conclusion
Absolute maximum
Absolute minimum
From the table, we find that the absolute maximum of over the interval [1, 3] is , and it occurs at . The absolute minimum of over the interval is , and it occurs at as shown in Figure .
Figure : This function has both an absolute maximum and an absolute minimum.
b. Step 1. Evaluate at the endpoints and .
and
Step 2. The derivative of is given by
for . The derivative is zero when , which implies . The derivative is undefined at . Therefore, the critical points of are . The point is an endpoint, so we already evaluated in step 1. The point is not in the interval of interest, so we need only evaluate . We find that
Step 3. We compare the values found in steps 1 and 2, in the following table.
Conclusion
Absolute maximum
Absolute minimum
We conclude that the absolute maximum of over the interval is zero, and it occurs at . The absolute minimum is and it occurs at as shown in Figure .
Figure : This function has an absolute maximum at an endpoint of the interval.
Exercise
Find the absolute maximum and absolute minimum of over the interval .
Hint
Look for critical points. Evaluate at all critical points and at the endpoints.
Answer
The absolute maximum is and it occurs at . The absolute minimum is and it occurs at .
At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local extrema and determined that if a function has a local extremum at a point , then must be a critical point of . However, being a critical point is not a sufficient condition for to have a local extremum at . Later in this chapter, we show how to determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value Theorem, which will help as we analyze the behavior of the graph of a function.
Key Concepts
A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no absolute maximum or absolute minimum.
If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need not have a local extremum at a critical point.
A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum occurs at a critical point or an endpoint.
Glossary
absolute extremum
if has an absolute maximum or absolute minimum at , we say has an absolute extremum at
absolute maximum
if for all in the domain of , we say has an absolute maximum at
absolute minimum
if for all in the domain of , we say has an absolute minimum at
critical point
if or is undefined, we say that c is a critical point of
extreme value theorem
if is a continuous function over a finite, closed interval, then has an absolute maximum and an absolute minimum
Fermat’s theorem
if has a local extremum at , then is a critical point of
local extremum
if has a local maximum or local minimum at , we say has a local extremum at
local maximum
if there exists an interval such that for all , we say has a local maximum at
local minimum
if there exists an interval such that for all , we say has a local minimum at