Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

2: Induction and Recursion


\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

If you are unfamiliar with the Principle of Mathematical Induction, you should read Appendix B. The principle of mathematical induction states that In order to prove a statement about an integer \(n\), if we can 1. Prove the statement when n = b, for some fixed integer b, and 2. Show that the truth of the statement for \(n = k − 1\) implies the truth of the statement for \(n = k\) whenever \(k > b\), then we can conclude the statement is true for all integers \(n ≥ b.\)

Thumbnail: A drawing of a graph. Image used with permission (Public Domain; AzaToth).