Skip to main content
Mathematics LibreTexts

1.2: Preparation

  • Page ID
    17325
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We begin with two useful convergence criteria for improper integrals that do not involve a parameter. Consistent with the definition on p. 152, we say that \(f\) is locally integrable on an interval \(I\) if it is integrable on every finite closed subinterval of \(I\).

    [theorem:2] Suppose \(g\) is locally integrable on \([a,b)\) and denote

    \[G(r)=\int_{a}^{r}g(x)\,dx,\quad a\le r<b.\]

    Then the improper integral \(\int_{a}^{b}g(x)\,dx\) converges if and only if\(,\) for each \(\epsilon >0,\) there is an \(r_{0}\in[a,b)\) such that

    \[\label{eq:9} |G(r)-G(r_{1})|<\epsilon,\quad r_{0}\le r,r_{1}<b.\]

    For necessity, suppose \(\int_{a}^{b}g(x)\,dx=L\). By definition, this means that for each \(\epsilon>0\) there is an \(r_{0}\in [a,b)\) such that

    \[|G(r)-L|<\frac{\epsilon}{2} \text{\quad and\quad} |G(r_{1})-L|<\frac{\epsilon}{2},\quad r_{0}\le r,r_{1}<b.\]

    Therefore

    \[\begin{aligned} |G(r)-G(r_{1})|&=&|(G(r)-L)-(G(r_{1})-L)|\\ &\le& |G(r)-L|+|G(r_{1})-L|< \epsilon,\quad r_{0}\le r,r_{1}<b.\end{aligned}\]

    For sufficiency, [eq:9] implies that

    \[|G(r)|= |G(r_{1})+(G(r)-G(r_{1}))|< |G(r_{1})|+|G(r)-G(r_{1})|\le |G(r_{1})|+\epsilon,\]

    \(r_{0}\le r\le r_{1}<b\). Since \(G\) is also bounded on the compact set \([a,r_{0}]\) (Theorem 5.2.11, p. 313), \(G\) is bounded on \([a,b)\). Therefore the monotonic functions

    \[\overline{G}(r)=\sup\left\{G(r_{1})\, \big|\, r\le r_{1}<b\right\} \text{\quad and\quad} \underline{G}(r)=\inf\left\{G(r_{1})\, \big|\, r\le r_{1}<b\right\}\]

    are well defined on \([a,b)\), and

    \[\lim_{r\to b-}\overline{G}(r)=\overline{L} \text{\quad and\quad} \lim_{r\to b-}\underline{G}(r)=\underline{L}\]

    both exist and are finite (Theorem 2.1.11, p. 47). From [eq:9],

    \[\begin{aligned} |G(r)-G(r_{1})|&=&|(G(r)-G(r_{0}))-(G(r_{1})-G(r_{0}))|\\ &\le &|G(r)-G(r_{0})|+|G(r_{1})-G(r_{0})|< 2\epsilon,\end{aligned}\]

    so

    \[\overline{G}(r)-\underline{G}(r)\le 2\epsilon, \quad r_{0}\le r, r_{1}<b.\]

    Since \(\epsilon\) is an arbitrary positive number, this implies that

    \[\lim_{r\to b-}(\overline{G}(r)-\underline{G}(r))=0,\]

    so \(\overline{L}=\underline{L}\). Let \(L=\overline{L}=\underline{L}\). Since

    \[\underline{G}(r)\le G(r)\le \overline{G}(r),\]

    it follows that \(\lim_{r\to b-} G(r)=L\).

    We leave the proof of the following theorem to you (Exercise [exer:2]).

    [theorem:3] Suppose \(g\) is locally integrable on \((a,b]\) and denote

    \[G(r)=\int_{r}^{b}g(x)\,dx,\quad a\le r<b.\]

    Then the improper integral \(\int_{a}^{b}g(x)\,dx\) converges if and only if\(,\) for each \(\epsilon >0,\) there is an \(r_{0}\in(a,b]\) such that

    \[|G(r)-G(r_{1})|<\epsilon,\quad a<r,r_{1}\le r_{0}.\]

    To see why we associate Theorems [theorem:2] and [theorem:3] with Cauchy, compare them with Theorem 4.3.5 (p. 204)


    This page titled 1.2: Preparation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.