1.1: Introduction to Improper Functions
- Page ID
- 17326
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Section 7.2 (pp. 462–484) we considered functions of the form
\[F(y)=\int_{a}^{b}f(x,y)\,dx, \quad c \le y \le d.\]
We saw that if \(f\) is continuous on \([a,b]\times [c,d]\), then \(F\) is continuous on \([c,d]\) (Exercise 7.2.3, p. 481) and that we can reverse the order of integration in
\[\int_{c}^{d}F(y)\,dy=\int_{c}^{d}\left(\int_{a}^{b}f(x,y)\,dx\right)\,dy\]
to evaluate it as
\[\int_{c}^{d}F(y)\,dy=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)\,dy\right)\,dx\]
(Corollary 7.2.3, p. 466).
Here is another important property of \(F\).
[theorem:1] If \(f\) and \(f_{y}\) are continuous on \([a,b]\times [c,d],\) then
\[\label{eq:1} F(y)=\int_{a}^{b}f(x,y)\,dx, \quad c \le y \le d,\]
is continuously differentiable on \([c,d]\) and \(F'(y)\) can be obtained by differentiating [eq:1] under the integral sign with respect to \(y;\) that is,
\[\label{eq:2} F'(y)=\int_{a}^{b}f_{y}(x,y)\,dx, \quad c \le y \le d.\]
Here \(F'(a)\) and \(f_{y}(x,a)\) are derivatives from the right and \(F'(b)\) and \(f_{y}(x,b)\) are derivatives from the left\(.\)
If \(y\) and \(y+\Delta y\) are in \([c,d]\) and \(\Delta y\ne0\), then
\[\label{eq:3} \frac{F(y+\Delta y)-F(y)}{\Delta y}= \int_{a}^{b}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}\,dx.\]
From the mean value theorem (Theorem 2.3.11, p. 83), if \(x\in[a,b]\) and \(y\), \(y+\Delta y\in[c,d]\), there is a \(y(x)\) between \(y\) and \(y+\Delta y\) such that
\[f(x,y+\Delta y)-f(x,y)=f_{y}(x,y)\Delta y= f_{y}(x,y(x))\Delta y+(f_{y}(x,y(x)-f_{y}(x,y))\Delta y.\]
From this and [eq:3],
\[\label{eq:4} \left|\frac{F(y+\Delta y)-F(y)}{\Delta y}-\int_{a}^{b}f_{y}(x,y)\,dx\right| \le \int_{a}^{b} |f_{y}(x,y(x))-f_{y}(x,y)|\,dx.\]
Now suppose \(\epsilon>0\). Since \(f_{y}\) is uniformly continuous on the compact set \([a,b]\times [c,d]\) (Corollary 5.2.14, p. 314) and \(y(x)\) is between \(y\) and \(y+\Delta y\), there is a \(\delta>0\) such that if \(|\Delta|<\delta\) then
\[|f_{y}(x,y)-f_{y}(x,y(x))|<\epsilon,\quad (x,y)\in[a,b]\times [c,d].\]
This and [eq:4] imply that
\[\left|\frac{F(y+\Delta y-F(y))}{\Delta y}-\int_{a}^{b}f_{y}(x,y)\,dx\right|<\epsilon(b-a)\]
if \(y\) and \(y+\Delta y\) are in \([c,d]\) and \(0<|\Delta y|<\delta\). This implies [eq:2]. Since the integral in [eq:2] is continuous on \([c,d]\) (Exercise 7.2.3, p. 481, with \(f\) replaced by \(f_{y}\)), \(F'\) is continuous on \([c,d]\).
[example:1] Since
\[f(x,y)=\cos xy\text{\quad and\quad} f_{y}(x,y)=-x\sin xy\]
are continuous for all \((x,y)\), Theorem [theorem:1] implies that if
\[\label{eq:5} F(y)=\int_{0}^{\pi} \cos xy\,dx,\quad -\infty<y<\infty,\]
then
\[\label{eq:6} F'(y)=-\int_{0}^{\pi}x\sin xy\,dx,\quad -\infty<y<\infty.\]
(In applying Theorem [theorem:1] for a specific value of \(y\), we take \(R=[0,\pi]\times [-\rho,\rho]\), where \(\rho>|y|\).) This provides a convenient way to evaluate the integral in [eq:6]: integrating the right side of [eq:5] with respect to \(x\) yields
\[F(y)=\frac{\sin xy}{y}\bigg|_{x=0}^{\pi}=\frac{\sin\pi y}{y}, \quad y\ne0.\]
Differentiating this and using [eq:6] yields
\[\int_{0}^{\pi}x\sin xy\,dx =\frac{\sin \pi y}{y^{2}}- \frac{\pi\cos \pi y}{y}, \quad y\ne0.\]
To verify this, use integration by parts.
We will study the continuity, differentiability, and integrability of
\[F(y)=\int_{a}^{b}f(x,y)\,dx,\quad y\in S,\]
where \(S\) is an interval or a union of intervals, and \(F\) is a convergent improper integral for each \(y\in S\). If the domain of \(f\) is \([a,b)\times S\) where \(-\infty<a< b\le \infty\), we say that \(F\) is pointwise convergent on \(S\) or simply convergent on \(S\), and write
\[\label{eq:7} \int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx\]
if, for each \(y\in S\) and every \(\epsilon>0\), there is an \(r=r_{0}(y)\) (which also depends on \(\epsilon\)) such that
\[\label{eq:8} \left|F(y)-\int_{a}^{r}f(x,y)\,dx\right|= \left|\int_{r}^{b}f(x,y)\,dx\right|< \epsilon, \quad r_{0}(y)\le y<b.\]
If the domain of \(f\) is \((a,b]\times S\) where \(-\infty\le a<b<\infty\), we replace [eq:7] by
\[\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx\]
and [eq:8] by
\[\left|F(y)-\int_{r}^{b}f(x,y)\,dx\right|= \left|\int_{a}^{r}f(x,y)\,dx\right|< \epsilon, \quad a<r\le r_{0}(y).\]
In general, pointwise convergence of \(F\) for all \(y\in S\) does not imply that \(F\) is continuous or integrable on \([c,d]\), and the additional assumptions that \(f_{y}\) is continuous and \(\int_{a}^{b}f_{y}(x,y)\,dx\) converges do not imply [eq:2].
[example:2] The function
\[f(x,y)=ye^{-|y|x}\]
is continuous on \([0,\infty)\times (-\infty,\infty)\) and
\[F(y)=\int_{0}^{\infty}f(x,y)\,dx =\int_{0}^{\infty}ye^{-|y|x}\,dx\]
converges for all \(y\), with
\[F(y)= \begin{cases} -1& y<0,\\ \phantom{-}0&y=0,\\ \phantom{-}1&y>0;\\ \end{cases}\]
therefore, \(F\) is discontinuous at \(y=0\).
[example:3] The function
\[f(x,y)=y^{3}e^{-y^{2}x}\]
is continuous on \([0,\infty)\times (-\infty,\infty)\). Let
\[F(y)=\int_{0}^{\infty}f(x,y)\,dx= \int_{0}^{\infty}y^{3}e^{-y^{2}x}\,dx =y,\quad -\infty<y<\infty.\]
Then
\[F'(y)=1, \quad -\infty<y<\infty.\]
However,
\[\int_{0}^{\infty}\frac{\partial{}}{\partial{y}}(y^{3}e^{-y^{2}x})\,dx =\int_{0}^{\infty}(3y^{2}-2y^{4}x)e^{-y^{2}x}\,dx= \begin{cases} 1,& y\ne0,\\ 0,& y=0, \end{cases}\]
so
\[F'(y)\ne\int_{0}^{\infty}\frac{\partial{f(x,y)}}{\partial{y}}\,dx\text{\quad if\quad}y=0.\]