Skip to main content
Mathematics LibreTexts

1.5: Dirichlet’s Tests

  • Page ID
    17322
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Weierstrass’s test is useful and important, but it has a basic shortcoming: it applies only to absolutely uniformly convergent improper integrals. The next theorem applies in some cases where \(\int_{a}^{b}f(x,y)\,dx\) converges uniformly on \(S\), but \(\int_{a}^{b}|f(x,y)|\,dx\) does not.

    [theorem:8] (Dirichlet’s Test for Uniform Convergence I) If \(g,\) \(g_{x},\) and \(h\) are continuous on \([a,b)\times S,\) then

    \[\int_{a}^{b}g(x,y)h(x,y)\,dx\]

    converges uniformly on \(S\) if the following conditions are satisfied:

    \[\displaystyle{\lim_{x\to b-}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};\]

    There is a constant \(M\) such that

    \[\sup_{y\in S}\left|\int_{a}^{x}h(u,y)\,du\right|< M, \quad a\le x<b;\]

    \(\int_{a}^{b}|g_{x}(x,y)|\,dx\) converges uniformly on \(S.\)

    If

    \[\label{eq:20} H(x,y)=\int_{a}^{x}h(u,y)\,du,\]

    then integration by parts yields

    \[\begin{aligned} \int_{r}^{r_{1}}g(x,y)h(x,y)\,dx&=&\int_{r}^{r_{1}}g(x,y)H_{x}(x,y)\,dx \nonumber\\ &=&g(r_{1},y)H(r_{1},y)-g(r,y)H(r,y)\label{eq:21}\\ &&-\int_{r}^{r_{1}}g_{x}(x,y)H(x,y)\,dx. \nonumber\end{aligned}\]

    Since assumption (b) and [eq:20] imply that \(|H(x,y)|\le M,\) \((x,y)\in (a,b]\times S\), Eqn. [eq:21] implies that

    \[\label{eq:22} \left|\int_{r}^{r_{1}}g(x,y)h(x,y)\,dx\right|< M\left(2\sup_{x\ge r}|g(x,y)|+\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx\right)\]

    on \([r,r_{1}]\times S\).

    Now suppose \(\epsilon>0\). From assumption (a), there is an \(r_{0} \in [a,b)\) such that \(|g(x,y)|<\epsilon\) on \(S\) if \(r_{0}\le x <b\). From assumption (c) and Theorem [theorem:6], there is an \(s_{0}\in [a,b)\) such that

    \[\int_{r}^{r_{1}}|g_{x}(x,y)|\,dx<\epsilon, \quad y\in S, \quad s_{0}<r<r_{1}<b.\]

    Therefore [eq:22] implies that

    \[\left|\int_{r}^{r_{1}}g(x,y)h(x,y)\right| < 3M\epsilon, \quad y\in S, \quad \max(r_{0},s_{0})<r<r_{1}<b.\]

    Now Theorem [theorem:4] implies the stated conclusion.

    The statement of this theorem is complicated, but applying it isn’t; just look for a factorization \(f=gh\), where \(h\) has a bounded antderivative on \([a,b)\) and \(g\) is “small” near \(b\). Then integrate by parts and hope that something nice happens. A similar comment applies to Theorem 9, which follows.

    Example \(\PageIndex{1}\)

    Add text here.

    Solution

    Add text here.

    Let

    \[I(y)=\int_{0}^{\infty}\frac{\cos xy}{x+y}\,dx,\quad y>0.\]

    The obvious inequality

    \[\left|\frac{\cos xy}{x+y}\right|\le \frac{1}{x+y}\]

    is useless here, since

    \[\int_{0}^{\infty}\frac{dx}{x+y}=\infty.\]

    However, integration by parts yields

    \[\begin{aligned} \int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx &=& \frac{\sin xy}{y(x+y)}\biggr|_{r}^{r_{1}}+ \int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx\\ &=&\frac{\sin r_{1}y}{y(r_{1}+y)}-\frac{\sin ry}{y(r+y)} +\int_{r}^{r_{1}}\frac{\sin xy}{y(x+y)^{2}}\,dx.\end{aligned}\]

    Therefore, if \(0< r<r_{1}\), then

    \[\begin{aligned} \left|\int_{r}^{r_{1}}\frac{\cos xy}{x+y}\,dx\right|< \frac{1}{y}\left(\frac{2}{r+y}+\int_{r}^{\infty}\frac{1}{(x+y)^{2}}\right) \le \frac{3}{y(r+y)^{2}}\le \frac{3}{\rho(r+\rho)}\end{aligned}\]

    if \(y\ge \rho>0\). Now Theorem [theorem:4] implies that \(I(y)\) converges uniformly on \([\rho,\infty)\) if \(\rho>0\).

    We leave the proof of the following theorem to you (Exercise [exer:10]).

    [theorem:9] (Dirichlet’s Test for Uniform Convergence II) If \(g,\) \(g_{x},\) and \(h\) are continuous on \((a,b]\times S,\) then

    \[\int_{a}^{b}g(x,y)h(x,y)\,dx\]

    converges uniformly on \(S\) if the following conditions are satisfied:

    \(\displaystyle{\lim_{x\to a+}\left\{\sup_{y\in S}|g(x,y)|\right\}=0};\)

    There is a constant \(M\) such that

    \[\sup_{y\in S}\left|\int_{x}^{b}h(u,y)\,du\right| \le M, \quad a< x\le b;\]

    \(\int_{a}^{b}|g_{x}(x,y)|\,dx\) converges uniformly on \(S\).

    By recalling Theorems 3.4.10 (p. 163), 4.3.20 (p. 217), and 4.4.16 (p. 248), you can see why we associate Theorems [theorem:8] and [theorem:9] with Dirichlet.


    This page titled 1.5: Dirichlet’s Tests is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.