1.4: Absolutely Uniformly Convergent Improper Integrals
- Page ID
- 17323
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)(Absolute Uniform Convergence I) [definition:4] The improper integral
\[\int_{a}^{b}f(x,y)\,dx=\lim_{r\to b-}\int_{a}^{r}f(x,y)\,dx\]
is said to converge absolutely uniformly on \(S\) if the improper integral
\[\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to b-}\int_{a}^{r}|f(x,y)|\,dx\]
converges uniformly on \(S\); that is, if, for each \(\epsilon>0\), there is an \(r_{0}\in [a,b)\) such that
\[\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{a}^{r}|f(x,y)|\,dx\right| <\epsilon, \quad y\in S,\quad r_{0}<r<b.\]
To see that this definition makes sense, recall that if \(f\) is locally integrable on \([a,b)\) for all \(y\) in \(S\), then so is \(|f|\) (Theorem 3.4.9, p. 161). Theorem [theorem:4] with \(f\) replaced by \(|f|\) implies that \(\int_{a}^{b}f(x,y)\,dx\) converges absolutely uniformly on \(S\) if and only if, for each \(\epsilon>0\), there is an \(r_{0}\in [a,b)\) such that
\[\int_{r}^{r_{1}}|f(x,y)|\,dx<\epsilon,\quad y\in S,\quad r_{0}\le r<r_{1}<b .\]
Since
\[\left|\int_{r}^{r_{1}}f(x,y)\,dx\right| \le \int_{r}^{r_{1}}|f(x,y)|\,dx,\]
Theorem [theorem:4] implies that if \(\int_{a}^{b}f(x,y)\,dx\) converges absolutely uniformly on \(S\) then it converges uniformly on \(S\).
[theorem:6] ( Weierstrass’s Test for Absolute Uniform Convergence I) Suppose \(M=M(x)\) is nonnegative on \([a,b),\) \(\int_{a}^{b}M(x)\,dx<\infty,\) and
\[\label{eq:19} |f(x,y)| \le M(x), \quad y\in S,\quad a\le x<b.\]
Then \(\int_{a}^{b}f(x,y)\,dx\) converges absolutely uniformly on \(S.\)
Denote \(\int_{a}^{b}M(x)\,dx=L<\infty\). By definition, for each \(\epsilon>0\) there is an \(r_{0}\in [a,b)\) such that
\[L-\epsilon < \int_{a}^{r}M(x)\,dx \le L,\quad r_{0}<r<b.\]
Therefore, if \(r_{0}< r\le r_{1},\) then
\[0\le \int_{r}^{r_{1}}M(x)\,dx=\left(\int_{a}^{r_{1}}M(x)\,dx -L\right)- \left(\int_{a}^{r}M(x)\,dx -L\right)<\epsilon\]
This and [eq:19] imply that
\[\int_{r}^{r_{1}}|f(x,y)|\,dx\le \int_{r}^{r_{1}} M(x)\,dx <\epsilon,\quad y\in S, \quad a\le r_{0}<r<r_{1}<b.\]
Now Theorem [theorem:4] implies the stated conclusion.
[example:7] Suppose \(g=g(x,y)\) is locally integrable on \([0,\infty)\) for all \(y\in S\) and, for some \(a_{0}\ge 0\), there are constants \(K\) and \(p_{0}\) such that
\[|g(x,y)| \le Ke^{p_{0}x},\quad y\in S, \quad x\ge a_{0}.\]
If \(p>p_{0}\) and \(r\ge a_{0}\), then
\[\begin{aligned} \int_{r}^{\infty}e^{-px} |g(x,y)|\,dx &=& \int_{r}^{\infty} e^{-(p-p_{0})x}e^{-p_{0}x}|g(x,y)|\,dx\\ &\le& K\int_{r}^{\infty} e^{-(p-p_{0})x}\,dx= \frac{K e^{-(p-p_{0})r}}{p-p_{0}},\end{aligned}\]
so \(\int_{0}^{\infty}e^{-px} g(x,y)\,dx\) converges absolutely on \(S\). For example, since
\[|x^{\alpha}\sin xy|<e^{p_{0}x}\text{\quad and \quad} |x^{\alpha}\cos xy|<e^{p_{0}x}\]
for \(x\) sufficiently large if \(p_{0}>0\), Theorem [theorem:4] implies that \(\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx\) and \(\int_{0}^{\infty}e^{-px}x^{\alpha}\cos xy\,dx\) converge absolutely uniformly on \((-\infty,\infty)\) if \(p>0\) and \(\alpha~\ge~0\). As a matter of fact, \(\int_{0}^{\infty}e^{-px}x^{\alpha}\sin xy\,dx\) converges absolutely on \((-\infty,\infty)\) if \(p>0\) and \(\alpha>-1\). (Why?)
(Absolute Uniform Convergence II) [definition:5] The improper integral
\[\int_{a}^{b}f(x,y)\,dx=\lim_{r\to a+}\int_{r}^{b}f(x,y)\,dx\]
is said to converge absolutely uniformly on \(S\) if the improper integral
\[\int_{a}^{b}|f(x,y)|\,dx=\lim_{r\to a+}\int_{r}^{b}|f(x,y)|\,dx\]
converges uniformly on \(S\); that is, if, for each \(\epsilon>0\), there is an \(r_{0}\in (a,b]\) such that
\[\left|\int_{a}^{b}|f(x,y)|\,dx-\int_{r}^{b}|f(x,y)|\,dx\right| <\epsilon, \quad y\in S, \quad a<r<r_{0}\le b.\]
We leave it to you (Exercise [exer:7]) to prove the following theorem.
[theorem:7] (Weierstrass’s Test for Absolute Uniform Convergence II) Suppose \(M=M(x)\) is nonnegative on \((a,b],\) \(\int_{a}^{b}M(x)\,dx<\infty,\) and
\[|f(x,y)| \le M(x), \quad y\in S, \quad x\in (a,b].\]
Then \(\int_{a}^{b}f(x,y)\,dx\) converges absolutely uniformly on \(S\).
[example:8] If \(g=g(x,y)\) is locally integrable on \((0,1]\) for all \(y\in S\) and
\[|g(x,y)| \le Ax^{-\beta}, \quad 0<x \le x_{0},\]
for each \(y \in S\), then
\[\int_{0}^{1} x^{\alpha}g(x,y)\,dx\]
converges absolutely uniformly on \(S\) if \(\alpha>\beta-1\). To see this, note that if \(0<r< r_{1}\le x_{0}\), then
\[\int_{r_{1}}^{r}x^{\alpha}|g(x,y)|\,dx \le A\int_{r_{1}}^{r} x^{\alpha-\beta}\,dx= \frac{Ax^{\alpha-\beta+1}}{\alpha-\beta+1}\biggr|_{r_{1}}^{r}< \frac{Ar^{\alpha-\beta+1}}{\alpha-\beta+1}.\]
Applying this with \(\beta=0\) shows that
\[F(y)=\int_{0}^{1} x^{\alpha}\cos xy\,dx\]
converges absolutely uniformly on \((-\infty,\infty)\) if \(\alpha>-1\) and
\[G(y)=\int_{0}^{1}x^{\alpha}\sin xy \,dx\]
converges absolutely uniformly on \((-\infty,\infty)\) if \(\alpha>-2\).
By recalling Theorem 4.4.15 (p. 246), you can see why we associate Theorems [theorem:6] and [theorem:7] with Weierstrass.