Skip to main content
Mathematics LibreTexts

3.C: Circles - Area, Sector, Circumference, Arc, and Angles

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)


    The purpose of this lesson is to learn how to find the area of a circle or a sector and the distance of the circumference or an arc.

    This lesson will address the following CCRS Standard(s) for Geometry:

    • 7.G.4: Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and the area of a circle
    • G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc


    1. Take notes while watching videos below
    2. Go to and log into our course to complete assignment 3.C with 80% or better.


    Complete assignment 3.C with 80% or better at


    In this lesson we have learned:

    • A circle is all the points equidistant from a center point
    • The area of a circle: LaTeX: A=\pi r^2</mi> <msup> <mi>r</mi> <mn>2</mn> </msup> </math>' data-equation-content="A=\pi r^2">
    • The area of a sector of d degrees: LaTeX: A=\frac{d}{360}\pi r^2</mi> <msup> <mi>r</mi> <mn>2</mn> </msup> </math>' data-equation-content="A=\frac{d}{360}\pi r^2">
    • The circumference of a circle: LaTeX: C=\pi d=2\pi r</mi> <mi>d</mi> <mo>=</mo> <mn>2</mn> <mi>&#x03C0;</mi> <mi>r</mi> </math>' data-equation-content="C=\pi d=2\pi r">
    • The distance of an arc of a degrees: LaTeX: Arc=\frac{a}{360}\pi d=\frac{a}{180}\pi r</mi> <mi>d</mi> <mo>=</mo> <mfrac> <mi>a</mi> <mn>180</mn> </mfrac> <mi>&#x03C0;</mi> <mi>r</mi> </math>' data-equation-content="Arc=\frac{a}{360}\pi d=\frac{a}{180}\pi r">

    3.C: Circles - Area, Sector, Circumference, Arc, and Angles is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?