# 8: 7. Probability without Equally Likely Outcomes

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The following topics are included in this series of eight videos.

1. Not Equally Likely, Example 1
2. Not Equally Likely, Example 2
3. Not Equally Likely, Example 3
4. Disjoint Events
5. Not Equally Likely, Example 4
6. Not Equally Likely, Example 5
7. Not Equally Likely, Example 6
8. Not Equally Likely, Example 7

#### Prework:

1. Suppose there are some orange, red, and purple balls in a bag, but you don’t know how many of each. You reach in and grab one. If the chance of picking an orange is $$25\%$$ and the chance of picking a red is $$37\%$$, what is the probability that you pick either an orange or purple ball?
2. Let $$S$$ be the sample space for an experiment. Let $$S = \{O_1, O_2, O_3, O_4, O_5\}$$. Assume that $$Pr[O_1] = 0.1$$ and $$Pr[O_4] = 0.25$$. Assume that $$O_2$$ and $$O_3$$ are equally likely and that $$O_5$$ is three times as likely as $$O_2$$. Find $$Pr[O_2]$$ and $$Pr[O_5]$$.
3. Suppose that $$Pr[A] = 0.4$$, $$Pr[B] = 0.6$$, and $$Pr[A \cap B^c] = 0.16$$. Determine $$Pr[A^c], Pr[A\cup B], Pr[A^c\cap B]$$.

#### Solutions:

1. Since the only three outcomes of this experiment are picking an orange, red, or purple ball, we have a $$100-25-37=38\%$$ chance of picking a purple ball. Therefore $$Pr(\text{orange or purple})=Pr(\text{orange})+Pr(\text{purple})=0.25+0.38=0.63.$$
2. Because there are only these 5 outcomes, we know $$Pr(O_1)+Pr(O_2)+Pr(O_3)+Pr(O_4)+Pr(O_5)=1$$. Since $$O_2$$ and $$O_3$$ are equally likely, we know that $$Pr(O_3)=Pr(O_2)$$, and since $$O_5$$ is three times as likely as $$O_2$$, we know $$Pr(O_5)=3Pr(O_2)$$. Substituting this information and the given probabilities into our initial equation, we get $$0.1+Pr(O_2)+Pr(O_2)+0.25+3Pr(O_2)=1$$. Combining like terms we see that $$0.35+5Pr(O_2)=1$$. We subtract $$0.35$$ and divide by $$5$$ to get that $$Pr(O_2)=0.13$$, and therefore $$Pr(O_5)=3Pr(O_2)=3\cdot 0.13=0.39.$$
3. The answer to the first question is that $$Pr(A^c)=0.6$$ since, for any set $$A$$, $$Pr(A)+Pr(A^c)=1$$. We next make the Venn diagram shown below by first using $$Pr(A\cap B^c)=0.16.$$ By subtraction, $$Pr(A\cap B)=0.24$$ and hence $$Pr(A^c\cap B)=0.36.$$ Therefore, $$Pr(A^c\cap B^c)=0.24.$$ Using the diagram we see that $$Pr(A\cup B)=0.16+0.24+0.36=0.76$$ and $$Pr(A^c\cap B)=0.36$$.

8: 7. Probability without Equally Likely Outcomes is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.