Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

14.7: Change of Variables in Multiple Integrals (Jacobians)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives
  • Determine the image of a region under a given transformation of variables.
  • Compute the Jacobian of a given transformation.
  • Evaluate a double integral using a change of variables.
  • Evaluate a triple integral using a change of variables.

Recall from Substitution Rule the method of integration by substitution. When evaluating an integral such as

23x(x24)5dx,

we substitute u=g(x)=x24. Then du=2xdx or xdx=12du and the limits change to u=g(2)=224=0 and u=g(3)=94=5. Thus the integral becomes

0512u5du

and this integral is much simpler to evaluate. In other words, when solving integration problems, we make appropriate substitutions to obtain an integral that becomes much simpler than the original integral.

We also used this idea when we transformed double integrals in rectangular coordinates to polar coordinates and transformed triple integrals in rectangular coordinates to cylindrical or spherical coordinates to make the computations simpler. More generally,

abf(x)dx=cdf(g(u))g(u)du,

Where x=g(u),dx=g(u)du, and u=c and u=d satisfy c=g(a) and d=g(b).

A similar result occurs in double integrals when we substitute

  • x=f(r,θ)=rcosθ
  • y=g(r,θ)=rsinθ, and
  • dA=dxdy=rdrdθ.

Then we get

Rf(x,y)dA=S(rcosθ,rsinθ)rdrdθ

where the domain R is replaced by the domain S in polar coordinates. Generally, the function that we use to change the variables to make the integration simpler is called a transformation or mapping.

Planar Transformations

A planar transformation T is a function that transforms a region G in one plane into a region R in another plane by a change of variables. Both G and R are subsets of R2. For example, Figure 14.7.1 shows a region G in the uv-plane transformed into a region R in the xy-plane by the change of variables x=g(u,v) and y=h(u,v), or sometimes we write x=x(u,v) and y=y(u,v). We shall typically assume that each of these functions has continuous first partial derivatives, which means gu,gv,hu, and hv exist and are also continuous. The need for this requirement will become clear soon.

On the left-hand side of this figure, there is a region G with point (u, v) given in the Cartesian u v-plane. Then there is an arrow from this graph to the right-hand side of the figure marked with x = g(u, v) and y = h(u, v). On the right-hand side of this figure there is a region R with point (x, y) given in the Cartesian xy- plane.
Figure 14.7.1: The transformation of a region G in the uv-plane into a region R in the xy-plane.
Definition: one-to-one transformation

A transformation T:GR, defined as T(u,v)=(x,y), is said to be a one-to-one transformation if no two points map to the same image point.

To show that T s a one-to-one transformation, we assume T(u1,v1)=T(u2,v2) and show that as a consequence we obtain (u1,v1)=(u2,v2). If the transformation T is one-to-one in the domain G, then the inverse T1 exists with the domain R such that T1T and TT1 are identity functions.

Figure 14.7.2 shows the mapping T(u,v)=(x,y) where x and y are related to u and v by the equations x=g(u,v) and y=h(u,v). The region G is the domain of T and the region R is the range of T, also known as the image of G under the transformation T.

Example 14.7.1A: Determining How the Transformation Works

Suppose a transformation T is defined as T(r,θ)=(x,y) where x=rcosθ,y=rsinθ. Find the image of the polar rectangle G={(r,θ)|0r1,0θπ/2} in the rθ-plane to a region R in the xy-plane. Show that T is a one-to-one transformation in G and find T1(x,y).

Solution

Since r varies from 0 to 1 in the rθ-plane, we have a circular disc of radius 0 to 1 in the xy-plane. Because θ varies from 0 to π/2 in the rθ-plane, we end up getting a quarter circle of radius 1 in the first quadrant of the xy-plane (Figure 14.7.2). Hence R is a quarter circle bounded by x2+y2=1 in the first quadrant.

On the left-hand side of this figure, there is a rectangle G with a marked subrectangle given in the first quadrant of the Cartesian r theta-plane. Then there is an arrow from this graph to the right-hand side of the figure marked with x = r cos theta and y = r sin theta. On the right-hand side of this figure there is a quarter circle R with a marked subannulus (analogous to the rectangle in the other graph) given in the Cartesian x y-plane.
Figure 14.7.2: A rectangle in the rθ-plane is mapped into a quarter circle in the xy-plane.

In order to show that T is a one-to-one transformation, assume T(r1,θ1)=T(r2,θ2) and show as a consequence that (r1,θ1)=(r2,θ2). In this case, we have

T(r1,θ1)=T(r2,θ2),

(x1,y1)=(x1,y1),

(r1cosθ1,r1sinθ1)=(r2cosθ2,r2sinθ2),

r1cosθ1=r2cosθ2,r1sinθ1=r2sinθ2.

Dividing, we obtain

r1cosθ1r1sinθ1=r2cosθ2r2sinθ2

cosθ1sinθ1=cosθ2sinθ2

tanθ1=tanθ2

θ1=θ2

since the tangent function is one-one function in the interval 0θπ/2. Also, since 0r1, we have r1=r2,θ1=θ2. Therefore, (r1,θ1)=(r2,θ2) and T is a one-to-one transformation from G to R.

To find T1(x,y) solve for r,θ in terms of x,y. We already know that r2=x2+y2 and tanθ=yx. Thus T1(x,y)=(r,θ) is defined as r=x2+y2 and tan1(yx).

Example 14.7.1B: Finding the Image under T

Let the transformation T be defined by T(u,v)=(x,y) where x=u2v2 and y=uv. Find the image of the triangle in the uv-plane with vertices (0,0),(0,1), and (1,1).

Solution

The triangle and its image are shown in Figure 14.7.3. To understand how the sides of the triangle transform, call the side that joins (0,0) and (0,1) side A, the side that joins (0,0) and (1,1) side B, and the side that joins (1,1) and (0,1) side C.

On the left-hand side of this figure, there is a triangular region given in the Cartesian uv-plane with boundaries A, B, and C represented by the v axis, the line u = v, and the line v = 1, respectively. Then there is an arrow from this graph to the right-hand side of the figure marked with x = u squared minus v squared and y = u v. On the right-hand side of this figure there is a complex region given in the Cartesian x y-plane with boundaries A’, B’, and C’ given by the x axis, y axis, and a line curving from (negative 1, 0) through (0, 1), namely x = y squared minus 1, respectively.
Figure 14.7.3: A triangular region in the uv-plane is transformed into an image in the xy-plane.
  • For the side A:u=0,0v1 transforms to x=v2,y=0 so this is the side A that joins (1,0) and (0,0).
  • For the side B:u=v,0u1 transforms to x=0,y=u2 so this is the side B that joins (0,0) and (0,1).
  • For the side C:0u1,v=1 transforms to x=u21,y=u (hence x=y21 so this is the side C that makes the upper half of the parabolic arc joining (1,0) and (0,1).

All the points in the entire region of the triangle in the uv-plane are mapped inside the parabolic region in the xy-plane.

Exercise 14.7.1

Let a transformation T be defined as T(u,v)=(x,y) where x=u+v,y=3v. Find the image of the rectangle G={(u,v):0u1,0v2} from the uv-plane after the transformation into a region R in the xy-plane. Show that T is a one-to-one transformation and find T1(x,y).

Hint

Follow the steps of Example 14.7.1B.

Answer

T1(x,y)=(u,v) where u=3xy3 and v=y3

Jacobians

Recall that we mentioned near the beginning of this section that each of the component functions must have continuous first partial derivatives, which means that gu,gv,hu and hv exist and are also continuous. A transformation that has this property is called a C1 transformation (here C denotes continuous). Let T(u,v)=(g(u,v),h(u,v)), where x=g(u,v) and y=h(u,v) be a one-to-one C1 transformation. We want to see how it transforms a small rectangular region S,Δu units by Δv units, in the uv-plane (Figure 14.7.4).

On the left-hand side of this figure, there is a region S with lower right corner point (u sub 0, v sub 0), height Delta v, and length Delta u given in the Cartesian u v-plane. Then there is an arrow from this graph to the right-hand side of the figure marked with T. On the right-hand side of this figure there is a region R with point (x sub 0, y sub 0) given in the Cartesian x y-plane with sides r(u, v sub 0) along the bottom and r(u sub 0, v) along the left.
Figure 14.7.4: A small rectangle S in the uv-plane is transformed into a region R in the xy-plane.

Since x=g(u,v) and y=h(u,v), we have the position vector r(u,v)=g(u,v)i+h(u,v)j of the image of the point (u,v). Suppose that (u0,v0)is the coordinate of the point at the lower left corner that mapped to (x0,y0)=T(u0,v0) The line v=v0 maps to the image curve with vector function r(u,v0), and the tangent vector at (x0,y0) to the image curve is

ru=gu(u0,v0)i+hv(u0,v0)j=xui+yuj.

Similarly, the line u=u0 maps to the image curve with vector function r(u0,v), and the tangent vector at (x0,y0) to the image curve is

rv=gv(u0,v0)i+hu(u0,v0)j=xvi+yvj.

Now, note that

ru=limΔu0r(u0+Δu,v0)r(u0,v0)Δusor(u0+Δu,v0)r(u0,v0)Δuru.

Similarly,

rv=limΔv0r(u0,v0+Δv)r(u0,v0)Δvsor(u0,v0+Δv)r(u0,v0)Δvrv.

This allows us to estimate the area ΔA of the image R by finding the area of the parallelogram formed by the sides Δvrv and Δuru. By using the cross product of these two vectors by adding the kth component as 0, the area ΔA of the image R (refer to The Cross Product) is approximately |Δuru×Δvrv|=|ru×rv|ΔuΔv. In determinant form, the cross product is

ru×rv=|ijkxuyu0xvyv0|=|xuyuxvyv|k=(xuyvxvyu)k

Since |k|=1, we have

ΔA|ru×rv|ΔuΔv=(xuyvxvyu)ΔuΔv.

Definition: Jacobian

The Jacobian of the C1 transformation T(u,v)=(g(u,v),h(u,v)) is denoted by J(u,v) and is defined by the 2×2 determinant

J(u,v)=|(x,y)(u,v)|=|xuyuxvyv|=(xuyvxvyu).

Using the definition, we have

ΔAJ(u,v)ΔuΔv=|(x,y)(u,v)|ΔuΔv.

Note that the Jacobian is frequently denoted simply by

J(u,v)=(x,y)(u,v).

Note also that

|xuyuxvyv|=(xuyvxvyu)=|xuxvyuyv|.

Hence the notation J(u,v)=(x,y)(u,v) suggests that we can write the Jacobian determinant with partials of x in the first row and partials of y in the second row.

Example 14.7.2A: Finding the Jacobian

Find the Jacobian of the transformation given in Example 14.7.1A.

Solution

The transformation in the example is T(r,θ)=(rcosθ,rsinθ) where x=rcosθ and y=rsinθ. Thus the Jacobian is

J(r,θ)=(x,y)(r,θ)=|xrxθyryθ|=|cosθrsinθsinθrcosθ|=rcos2θ+rsin2θ=r(cos2θ+sin2θ)=r.

Example 14.7.2B: Finding the Jacobian

Find the Jacobian of the transformation given in Example 14.7.1B.

Solution

The transformation in the example is T(u,v)=(u2v2,uv) where x=u2v2 and y=uv. Thus the Jacobian is

J(u,v)=(x,y)(u,v)=|xuxvyuyv|=|2u2vvu|=2u2+2v2.

Exercise 14.7.2

Find the Jacobian of the transformation given in the previous checkpoint: T(u,v)=(u+v,2v).

Hint

Follow the steps in the previous two examples.

Answer

J(u,v)=(x,y)(u,v)=|xuxvyuyv|=|1102|=2

Change of Variables for Double Integrals

We have already seen that, under the change of variables T(u,v)=(x,y) where x=g(u,v) and y=h(u,v), a small region ΔA in the xy-plane is related to the area formed by the product ΔuΔv in the uv-plane by the approximation

ΔAJ(u,v)Δu,Δv.

Now let’s go back to the definition of double integral for a minute:

Rf(x,y)fA=limm,ni=1mj=1nf(xij,yij)ΔA.

Referring to Figure 14.7.5, observe that we divided the region S in the uv-plane into small subrectangles Sij and we let the subrectangles Rij in the xy-plane be the images of Sij under the transformation T(u,v)=(x,y).

On the left-hand side of this figure, there is a rectangle S with an inscribed red oval and a subrectangle with lower right corner point (u sub ij, v sub ij), height Delta v, and length Delta u given in the Cartesian u v-plane. Then there is an arrow from this graph to the right-hand side of the figure marked with T. On the right-hand side of this figure there is a region R with inscribed (deformed) red oval and a subrectangle R sub ij with corner point (x sub ij, y sub ij) given in the Cartesian x y-plane. The subrectangle is blown up and shown with vectors pointing along the edge from the corner point.
Figure 14.7.5: The subrectangles Sij in the uv-plane transform into subrectangles Rij in the xy-plane.

Then the double integral becomes

R=f(x,y)dA=limm,ni=1mj=1nf(xij,yij)ΔA=limm,ni=1mj=1nf(g(uij,vij),h(uij,vij))|J(uij,vij)|ΔuΔv.

Notice this is exactly the double Riemann sum for the integral

Sf(g(u,v),h(u,v))|(x,y)(u,v)|dudv.

Change of Variables for Double Integrals

Let T(u,v)=(x,y) where x=g(u,v) and y=h(u,v) be a one-to-one C1 transformation, with a nonzero Jacobian on the interior of the region S in the uv-plane it maps S into the region R in the xy-plane. If f is continuous on R, then

Rf(x,y)dA=Sf(g(u,v),h(u,v))|(x,y)(u,v)|dudv.

With this theorem for double integrals, we can change the variables from (x,y) to (u,v) in a double integral simply by replacing

dA=dxdy=|(x,y)(u,v)|dudv

when we use the substitutions x=g(u,v) and y=h(u,v) and then change the limits of integration accordingly. This change of variables often makes any computations much simpler.

Example 14.7.3: Changing Variables from Rectangular to Polar Coordinates

Consider the integral

0202xx2x2+y2dydx.

Use the change of variables x=rcosθ and y=rsinθ, and find the resulting integral.

Solution

First we need to find the region of integration. This region is bounded below by y=0 and above by y=2xx2 (Figure 14.7.6).

A semicircle in the first quadrant of the xy plane with radius 1 and center (1, 0). The equation for this curve is given as y = the square root of (2x minus x squared)
Figure 14.7.6: Changing a region from rectangular to polar coordinates.

Squaring and collecting terms, we find that the region is the upper half of the circle x2+y22x=0, that is y2+(x1)2=1. In polar coordinates, the circle is r=2cosθ so the region of integration in polar coordinates is bounded by 0rcosθ and 0θπ2.

The Jacobian is J(r,θ)=r, as shown in Example 14.7.2A. Since r0, we have |J(r,θ)|=r.

The integrand x2+y2 changes to r in polar coordinates, so the double iterated integral is

0202xx2x2+y2dydx=0π/202cosθr|j(r,θ)|drdθ=0π/202cosθr2drdθ.

Exercise 14.7.3

Considering the integral 0101x2(x2+y2)dydx, use the change of variables x=rcosθ and y=rsinθ and find the resulting integral.

Hint

Follow the steps in the previous example.

Answer

0π/201r3drdθ

Notice in the next example that the region over which we are to integrate may suggest a suitable transformation for the integration. This is a common and important situation.

Example 14.7.4: Changing Variables

Consider the integral R(xy)dydx, where R is the parallelogram joining the points (1,2),(3,4),(4,3), and (6,5) (Figure 14.7.7). Make appropriate changes of variables, and write the resulting integral.

A parallelogram R with corners (1, 2), (3, 4), (6, 5), and (4, 3).
Figure 14.7.7: The region of integration for the given integral.
Solution

First, we need to understand the region over which we are to integrate. The sides of the parallelogram are xy+1,xy1=0,x3y+5=0 and x3y+9=0 (Figure 14.7.8). Another way to look at them is xy=1,xy=1,x3y=5, and x3y=9.

Clearly the parallelogram is bounded by the lines y=x+1,y=x1,y=13(x+5), and y=13(x+9).

Notice that if we were to make u=xy and v=x3y, then the limits on the integral would be 1u1 and 9v5.

To solve for x and y, we multiply the first equation by 3 and subtract the second equation, 3uv=(3x3y)(x3y)=2x. Then we have x=3uv2. Moreover, if we simply subtract the second equation from the first, we get uv=(xy)(x3y)=2y and y=uv2.

A parallelogram R with corners (1, 2), (3, 4), (6, 5), and (4, 3) formed by the lines y = x + 1, y = x minus 1, y = (x + 9)/3, and y = (x + 5)/3.
Figure 14.7.8: A parallelogram in the xy-plane that we want to transform by a change in variables.

Thus, we can choose the transformation

T(u,v)=(3uv2,uv2) and compute the Jacobian J(u,v). We have

J(u,v)=(x,y)(u,v)=|xuxvyuyv|=|3/21/21/21/2|=34+14=12

Therefore, |J(u,v)|=12. Also, the original integrand becomes

xy=12[3uvu+v]=12[3uu]=12[2u]=u.

Therefore, by the use of the transformation T, the integral changes to

R(xy)dydx=9511J(u,v)ududv=9511(12)ududv, which is much simpler to compute.

Exercise 14.7.4

Make appropriate changes of variables in the integral R4(xy)2dydx, where R is the trapezoid bounded by the lines xy=2,xy=4,x=0, and y=0. Write the resulting integral.

Hint

Follow the steps in the previous example.

Answer

x=12(v+u) and y=12(vu)

and

24uu(12)4u2dvdu.

We are ready to give a problem-solving strategy for change of variables.

Problem-Solving Strategy: Change of Variables
  1. Sketch the region given by the problem in the xy-plane and then write the equations of the curves that form the boundary.
  2. Depending on the region or the integrand, choose the transformations x=g(u,v) and y=h(u,v).
  3. Determine the new limits of integration in the uv-plane.
  4. Find the Jacobian J(u,v).
  5. In the integrand, replace the variables to obtain the new integrand.
  6. Replace dydx or dxdy, whichever occurs, by J(u,v)dudv.

In the next example, we find a substitution that makes the integrand much simpler to compute.

Example 14.7.5: Evaluating an Integral

Using the change of variables u=xy and v=x+y, evaluate the integral R(xy)ex2y2dA, where R is the region bounded by the lines x+y=1 and x+y=3 and the curves x2y2=1 and x2y2=1 (see the first region in Figure 14.7.9).

Solution

As before, first find the region R and picture the transformation so it becomes easier to obtain the limits of integration after the transformations are made (Figure 14.7.9).

On the left-hand side of this figure, there is a complex region R in the Cartesian x y-plane bounded by x squared minus y squared = negative 1, x squared minus y squared = 1, x + y = 3, and x + y = 1. Then there is an arrow from this graph to the right-hand side of the figure marked with x = (u + v)/2 and y = (v minus u)/2. On the right-hand side of this figure there is a simpler region S in the Cartesian u v-plane bounded by u v = negative 1, u v = 1, v = 1, and v = 3.
Figure 14.7.9: Transforming the region R into the region S to simplify the computation of an integral.

Given u=xy and v=x+y, we have x=u+v2 and y=vu2 and hence the transformation to use is T(u,v)=(u+v2,vu2). The lines x+y=1 and x+y=3 become v=1 and v=3, respectively. The curves x2y2=1 and x2y2=1 become uv=1 and uv=1, respectively.

Thus we can describe the region S (see the second region Figure 14.7.9) as

S={(u,v)|1v3,1vu1v}.

The Jacobian for this transformation is

J(u,v)=(x,y)(u,v)=|xuxvyuyv|=|1/21/21/21/2|=12.

Therefore, by using the transformation T, the integral changes to

R(xy)ex2y2dA=12131/v1/vueuvdudv.

Doing the evaluation, we have

12131/v1/vueuvdudv=23e0.245.

Exercise 14.7.5

Using the substitutions x=v and y=u+v, evaluate the integral Rysin(y2x)dA, where R is the region bounded by the lines y=x,x=2 and y=0.

Hint

Sketch a picture and find the limits of integration.

Answer

12(sin22)

Change of Variables for Triple Integrals

Changing variables in triple integrals works in exactly the same way. Cylindrical and spherical coordinate substitutions are special cases of this method, which we demonstrate here.

Suppose that G is a region in uvw-space and is mapped to D in xyz-space (Figure 14.7.10) by a one-to-one C1 transformation T(u,v,w)=(x,y,z) where x=g(u,v,w),y=h(u,v,w), and z=k(u,v,w).

On the left-hand side of this figure, there is a region G in u v w space. Then there is an arrow from this graph to the right-hand side of the figure marked with x = g(u, v, w), y = h(u, v, w), and z = k(u, v, w). On the right-hand side of this figure there is a region D in xyz space.
Figure 14.7.10: A region G in uvw-space mapped to a region D in xyz-space.

Then any function F(x,y,z) defined on D can be thought of as another function H(u,v,w) that is defined on G:

F(x,y,z)=F(g(u,v,w),h(u,v,w),k(u,v,w))=H(u,v,w).

Now we need to define the Jacobian for three variables.

Definition: Jacobian determinant

The Jacobian determinant J(u,v,w) in three variables is defined as follows:

J(u,v,w)=|xuyuzuxvyvzvxwywzw|.

This is also the same as

J(u,v,w)=|xuxvxwyuyvywzuzvzw|.

The Jacobian can also be simply denoted as (x,y,z)(u,v,w).

With the transformations and the Jacobian for three variables, we are ready to establish the theorem that describes change of variables for triple integrals.

Change of Variables for Triple Integrals

Let T(u,v,w)=(x,y,z) where x=g(u,v,w),y=h(u,v,w), and z=k(u,v,w), be a one-to-one C1 transformation, with a nonzero Jacobian, that maps the region G in the uvw-space into the region D in the xyz-space. As in the two-dimensional case, if F is continuous on D, then

(14.7.1)DF(x,y,z)dV=Gf(g(u,v,w)h(u,v,w),k(u,v,w))|(x,y,z)(u,v,w)|dudvdw(14.7.2)=GH(u,v,w)|J(u,v,w)|dudvdw.

Let us now see how changes in triple integrals for cylindrical and spherical coordinates are affected by this theorem. We expect to obtain the same formulas as in Triple Integrals in Cylindrical and Spherical Coordinates.

Example 14.7.6A: Obtaining Formulas in Triple Integrals for Cylindrical and Spherical Coordinates

Derive the formula in triple integrals for

  1. cylindrical and
  2. spherical coordinates.
Solution

A.

For cylindrical coordinates, the transformation is T(r,θ,z)=(x,y,z) from the Cartesian rθz-space to the Cartesian xyz-space (Figure 14.7.11). Here x=rcosθ,y=rsinθ and z=z. The Jacobian for the transformation is

J(r,θ,z)=(x,y,z)(r,θ,z)=|xrxθxzyryθyzzrzθzz|

|cosθrsinθ0sinθrcosθ0001|=rcos2θ+rsin2θ=r.

We know that r0, so |J(r,θ,z)|=r. Then the triple integral is Df(x,y,z)dV=Gf(rcosθ,rsinθ,z)rdrdθdz.

On the left-hand side of this figure, there is a cube G with sides parallel to the coordinate axes in cylindrical coordinate space. Then there is an arrow from this graph to the right-hand side of the figure marked with x = r cos theta, y = r sin theta, and z = z. On the right-hand side of this figure there is a region D in x y z space that is a thick annulus. The top is labeled z = constant, the flat vertical side is labeled theta = constant, and the outermost side is labeled r = constant.
Figure 14.7.11: The transformation from rectangular coordinates to cylindrical coordinates can be treated as a change of variables from region G in rθz-space to region D in xyz-space.

B.

For spherical coordinates, the transformation is T(ρ,θ,φ) from the Cartesian ρθφ-space to the Cartesian xyz-space (Figure 14.7.12). Here x=ρsinφcosθ,y=ρsinφsinθ, and z=ρcosφ. The Jacobian for the transformation is

J(ρ,θ,φ)=(x,y,z)(ρ,θ,φ)=|xρxθxφyρyθyφzρzθzφ|=|sinφcosθρsinφsinθρcosφcosθsinφsinθρsinφcosθρcosφsinθcosφ0ρsinφ|.

Expanding the determinant with respect to the third row:

=cosφ|ρsinφsinθρcosφcosθρsinφcosθρcosφsinθ|ρsinφ|sinφcosθρsinφsinθsinφsinθρsinφcosθ|=cosφ(ρ2sinφcosφsin2θρ2sinφcosφcos2θ)ρsinφ(ρsin2φcos2θ+ρsin2φsin2θ)=ρ2sinφcos2φ(sin2θ+cos2θ)ρ2sinφsin2φ(sin2θ+cos2θ)=ρ2sinφcos2φρ2sinφsin2φ=ρsinφ(cos2φ+sin2φ)=ρ2sinφ.

Since 0φπ, we must have sinφ0. Thus |J(ρ,θ,φ)|=|ρ2sinφ|=ρ2sinφ.

On the left-hand side of this figure, there is a cube G with sides parallel to the coordinate axes in rho phi theta space. Then there is an arrow from this graph to the right-hand side of the figure marked with x = rho sin phi cos theta, y = rho sin phi sin theta, and z = rho cos phi. On the right-hand side of this figure there is a region D in xyz space that is a thick annulus and has the point (x, y, z) shown as being equal to (rho, phi, theta). The top is labeled phi = constant, the flat vertical side is labeled theta = constant, and the outermost side is labeled rho = constant.
Figure 14.7.12: The transformation from rectangular coordinates to spherical coordinates can be treated as a change of variables from region G in ρθφ-space to region D in xyz-space.

Then the triple integral becomes

Df(x,y,z)dV=Gf(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρ2sinφdρdφdθ.

Let’s try another example with a different substitution.

Example 14.7.6B: Evaluating a Triple Integral with a Change of Variables

Evaluate the triple integral

0304y/2(y/2)+1(x+z3)dxdydz

In xyz-space by using the transformation

u=(2xy)/2,v=y/2, and w=z/3.

Then integrate over an appropriate region in uvw-space.

Solution

As before, some kind of sketch of the region G in xyz-space over which we have to perform the integration can help identify the region D in uvw-space (Figure 14.7.13). Clearly G in xyz-space is bounded by the planes x=y/2,x=(y/2)+1,y=0,y=4,z=0, and z=4. We also know that we have to use u=(2xy)/2,v=y/2, and w=z/3 for the transformations. We need to solve for x,y and z. Here we find that x=u+v,y=2v, and z=3w.

On the left-hand side of this figure, there is a box G with sides 1, 2, and 1 along the u, v, and w axes, respectively. Then there is an arrow from this graph to the right-hand side of the figure marked with x = u + v, y = 2v, and z = 3w. On the right-hand side of this figure there is a region D in xyz space that is a rotated box with sides 1, 4, and 3 along the x, y, and z axes. The rear plane is marked x = y/2 or y = 2x. The front plane is marked x = y/2 + 1 or y = 2x minus 2.
Figure 14.7.13: The region G in uvw-space is transformed to region D in xyz-space.

Using elementary algebra, we can find the corresponding surfaces for the region G and the limits of integration in uvw-space. It is convenient to list these equations in a table.

Equations in xyz for the region D Corresponding equations in uvw for the region G Limits for the integration in uvw
x=y/2 u+v=2v/2=v u=0
x=y/2 u+v=(2v/2)+1=v+1 u=1
y=0 2v=0 v=0
y=4 2v=4 v=2
z=0 3w=0 w=0
z=3 3w=3 w=1

Now we can calculate the Jacobian for the transformation:

J(u,v,w)=|xuxvxwyuyvywzuzvzw|=|110020003|=6.

The function to be integrated becomes

f(x,y,z)=x+z3=u+v+3w3=u+v+w.

We are now ready to put everything together and complete the problem.

0304y/2(y/2)+1(x+z3)dxdydz=010201(u+v+w)|J(u,v,w)|dudvdw=010201(u+v+w)|6|dudvdw=6010201(u+v+w)dudvdw=60102[u22+vu+wu]01dvdw=60102(12+v+u)dvdw=601[12v+v22+wv]02dw=601(3+2w)dw=6[3w+w2]01=24.

Exercise 14.7.6

Let D be the region in xyz-space defined by 1x2,0xy2, and 0z1.

Evaluate D(x2y+3xyz)dxdydz by using the transformation u=x,v=xy, and w=3z.

Hint

Make a table for each surface of the regions and decide on the limits, as shown in the example.

Answer

030212(v3+vw3u)dudvdw=2+ln8

Key Concepts

  • A transformation T is a function that transforms a region G in one plane (space) into a region R. in another plane (space) by a change of variables.
  • A transformation T:GR defined as T(u,v)=(x,y) (or T(u,v,w)=(x,y,z))is said to be a one-to-one transformation if no two points map to the same image point.
  • If f is continuous on R, then Rf(x,y)dA=Sf(g(u,v),h(u,v))|(x,y)(u,v)|dudv.
  • If F is continuous on R, then RF(x,y,z)dV=GF(g(u,v,w),h(u,v,w),k(u,v,w)|(x,y,z)(u,v,w)|dudvdw=GH(u,v,w)|J(u,v,w)|dudvdw.

[T] Lamé ovals (or superellipses) are plane curves of equations (xa)n+(yb)n=1, where a, b, and n are positive real numbers.

a. Use a CAS to graph the regions R bounded by Lamé ovals for a=1,b=2,n=4 and n=6 respectively.

b. Find the transformations that map the region R bounded by the Lamé oval x4+y4=1 also called a squircle and graphed in the following figure, into the unit disk.

A square of side length 2 with rounded corners.

c. Use a CAS to find an approximation of the area A(R) of the region R bounded by x4+y4=1. Round your answer to two decimal places.

[T] Lamé ovals have been consistently used by designers and architects. For instance, Gerald Robinson, a Canadian architect, has designed a parking garage in a shopping center in Peterborough, Ontario, in the shape of a superellipse of the equation (xa)n+(yb)n=1 with ab=97 and n=e. Use a CAS to find an approximation of the area of the parking garage in the case a=900 yards, b=700 yards, and n=2.72 yards.

[Hide Solution]

A(R)83,999.2

Chapter Review Exercises

True or False? Justify your answer with a proof or a counterexample.

abcdf(x,y)dydx=cdabf(x,y)dydx

Fubini’s theorem can be extended to three dimensions, as long as f is continuous in all variables.

[Hide solution]

True.

The integral 02π0101dzdrdθ represents the volume of a right cone.

The Jacobian of the transformation for x=u22v,y=3v2uv is given by 4u2+6u+4v.

[Hide Solution]

False.

Evaluate the following integrals.

R(5x3y2y2)dA,R={(x,y)|0x2,1y4}

Dy3x2+1dA,D={(x,y)|0x1,xyx}

[Hide Solution]

0

Dsin(x2+y2)dA where D is a disk of radius 2 centered at the origin 0101xyex2dxdy

[Hide Solution]

14

110z0xz6dydxdz

R3ydV, where R={(x,y,z)|0x1,0yx,0z9y2}

[Hide Solution]

1.475

0202πr1rdzdθdr

02π0π/213ρ2sin(φ)dρdφ,dθ

[Hide Solution]

523π

011x21x21x2y21x2y2dzdysx

For the following problems, find the specified area or volume.

The area of region enclosed by one petal of r=cos(4θ).

[Hide Solution]

π16

The volume of the solid that lies between the paraboloid z=2x2+2y2 and the plane z=8.

The volume of the solid bounded by the cylinder x2+y2=16 and from z=1 to z+x=2.

[Hide Solution]

93.291

The volume of the intersection between two spheres of radius 1, the top whose center is (0,0,0.25) and the bottom, which is centered at (0,0,0).

For the following problems, find the center of mass of the region.

ρ(x,y)=xy on the circle with radius 1 in the first quadrant only.

[Hide Solution]

(815,815)

ρ(x,y)=(y+1)x in the region bounded by y=ex,y=0, and x=1.

ρ(x,y,z)=z on the inverted cone with radius 2 and height 2.

(0,0,85)

The volume an ice cream cone that is given by the solid above z=(x2+y2) and below z2+x2+y2=z.

The following problems examine Mount Holly in the state of Michigan. Mount Holly is a landfill that was converted into a ski resort. The shape of Mount Holly can be approximated by a right circular cone of height 1100 ft and radius 6000 ft.

If the compacted trash used to build Mount Holly on average has a density 400lb/ft3, find the amount of work required to build the mountain.

[Hide Solution]

1.452π×1015 ft-lb

In reality, it is very likely that the trash at the bottom of Mount Holly has become more compacted with all the weight of the above trash. Consider a density function with respect to height: the density at the top of the mountain is still density 400lb/ft3 and the density increases. Every 100 feet deeper, the density doubles. What is the total weight of Mount Holly?

The following problems consider the temperature and density of Earth’s layers.

[T] The temperature of Earth’s layers is exhibited in the table below. Use your calculator to fit a polynomial of degree 3 to the temperature along the radius of the Earth. Then find the average temperature of Earth. (Hint: begin at 0 in the inner core and increase outward toward the surface)

Layer Depth from center (km) Temperature oC
Rocky Crust 0 to 40 0
Upper Mantle 40 to 150 870
Mantle 400 to 650 870
Inner Mantel 650 to 2700 870
Molten Outer Core 2890 to 5150 4300
Inner Core 5150 to 6378 7200

Source: http://www.enchantedlearning.com/sub...h/Inside.shtml

[Hide Solution]

y=1.238×107x3+0.001196x23.666x+7208; average temperature approximately 2800oC

[T] The density of Earth’s layers is displayed in the table below. Using your calculator or a computer program, find the best-fit quadratic equation to the density. Using this equation, find the total mass of Earth.

Layer Depth from center (km) Density (g/cm3)
Inner Core 0 12.95
Outer Core 1228 11.05
Mantle 3488 5.00
Upper Mantle 6338 3.90
Crust 6378 2.55

Source: http://hyperphysics.phy-astr.gsu.edu...rthstruct.html

The following problems concern the Theorem of Pappus (see Moments and Centers of Mass for a refresher), a method for calculating volume using centroids. Assuming a region R, when you revolve around the x-axis the volume is given by Vx=2πAy¯, and when you revolve around the y-axis the volume is given by Vy=2πAx¯, where A is the area of R. Consider the region bounded by x2+y2=1 and above y=x+1.

Find the volume when you revolve the region around the x-axis.

[Hide Solution]

π3

Find the volume when you revolve the region around the y-axis.

Glossary

Jacobian

the Jacobian J(u,v) in two variables is a 2×2 determinant:

J(u,v)=|xuyuxvyv|;

the Jacobian J(u,v,w) in three variables is a 3×3 determinant:

J(u,v,w)=|xuyuzuxvyvzvxwywzw|

one-to-one transformation
a transformation T:GR defined as T(u,v)=(x,y) is said to be one-to-one if no two points map to the same image point
planar transformation
a function T that transforms a region G in one plane into a region R in another plane by a change of variables
transformation
a function that transforms a region GG in one plane into a region RR in another plane by a change of variables

14.7: Change of Variables in Multiple Integrals (Jacobians) is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?