Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.3.1: Introduction to Matrices (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

A vendor sells hot dogs and corn dogs at three different locations. His total sales(in hundreds) for January and February from the three locations are given in the table below.

JANUARY FEBRUARY
HOT DOGS CORN DOGS HOT DOGS CORN DOGS
PLACE I 10 8 8 7
PLACE II 8 6 6 7
PLACE III 6 4 6 5

Represent these tables as 3×2 matrices J and F, and answer problems 1 - 5.

1) Determine total sales for the two months, that is, find J+F. 2) Find the difference in sales, JF.
3) If hot dogs sell for $3 and corn dogs for $2, find the revenue from the sale of hot dogs and corn dogs. Hint: Let P be a 2×1 matrix. Find (J+F)P.

4) If March sales will be up from February by 10%, 15%, and 20% at Place I, Place II, and Place III, respectively, find the expected number of hot dogs and corn dogs to be sold
in March. Hint: Let R be a 1×3 matrix with entries 1.10, 1.15, and 1.20. Find M=RF.

5) Hots dogs sell for $3 and corn dogs sell for $2. Using matrix M that predicts the number of hot dogs and corn dogs expected to be sold in March from problem (4), find the 1×1 matrix that predicts total revenue in March. Hint: Use 2×1 price matrix P from problem (3) and find MP.

Determine the sums and products in problems 6-13. Given the matrices A, B, C, and D as follows:

A=[361013241]B=[112142311]C=[123]D=[232]

6) 3A2B 7) AB
8) BA 9) AB+BA
10) A2 11) 2BC
12) 2CD+3AB 13) A2B

14) Let E=[mnpq] and F=[abcd], find EF.

15) Let E=[mnpq] and F=[abcd], find FE.

16) Let G=[361013241] and H=[xyz], find GH.

17) Let G=[361013241] and H=[xyz]. Explain why the product HG does not exist.

Express the following systems as AX=B, where A, X, and B are matrices.

18) 4x5y=65x6y=7

19) x2y+2z=3x3y+4z=7x2y3z=12

20) 2x+3z=173x2y=105y+2z=11

21) x+2y+3z+2w=14x2yz=5y2z+4w=9x+3z+3w=15


This page titled 7.3.1: Introduction to Matrices (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Rupinder Sekhon and Roberta Bloom via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?