Skip to main content
Mathematics LibreTexts

1.3: Exponents and Scientific Notation

  • Page ID
    118279
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section, you will:

    • Use the product rule of exponents.
    • Use the quotient rule of exponents.
    • Use the power rule of exponents.
    • Use the zero exponent rule of exponents.
    • Use the negative rule of exponents.
    • Find the power of a product and a quotient.
    • Simplify exponential expressions.
    • Use scientific notation.

    Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not be obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536 pixels, which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits per pixel, and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information used to film a one-hour (3,600-second) digital film is then an extremely large number.

    Using a calculator, we enter 2,048×1,536×48×24×3,6002,048×1,536×48×24×3,600 and press ENTER. The calculator displays 1.304596316E13. What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a maximum of approximately 1.3×10131.3×1013 bits of data in that one-hour film. In this section, we review rules of exponents first and then apply them to calculations involving very large or small numbers.

    Using the Product Rule of Exponents

    Consider the product x3⋅x4.x3⋅x4. Both terms have the same base, x, but they are raised to different exponents. Expand each expression, and then rewrite the resulting expression.

    x3⋅x4===x⋅x⋅x3factors⋅x⋅x⋅x⋅x4factorsx⋅x⋅x⋅x⋅x⋅x⋅x7factorsx7x3⋅x4=x⋅x⋅x3factors⋅x⋅x⋅x⋅x 4factors=x⋅x⋅x⋅x⋅x⋅x⋅x7factors=x7

    The result is that x3⋅x4=x3+4=x7.x3⋅x4=x3+4=x7.

    Notice that the exponent of the product is the sum of the exponents of the terms. In other words, when multiplying exponential expressions with the same base, we write the result with the common base and add the exponents. This is the product rule of exponents.

    am⋅an=am+nam⋅an=am+n

    Now consider an example with real numbers.

    23⋅24=23+4=2723⋅24=23+4=27

    We can always check that this is true by simplifying each exponential expression. We find that 2323 is 8, 2424 is 16, and 2727 is 128. The product 8⋅168⋅16 equals 128, so the relationship is true. We can use the product rule of exponents to simplify expressions that are a product of two numbers or expressions with the same base but different exponents.

    THE PRODUCT RULE OF EXPONENTS

    For any real number aa and natural numbers mm and n,n, the product rule of exponents states that

    am⋅an=am+nam⋅an=am+n

    EXAMPLE 1

    Using the Product Rule

    Write each of the following products with a single base. Do not simplify further.

    1. ⓐ t5⋅t3t5⋅t3
    2. ⓑ (−3)5⋅(−3)(−3)5⋅(−3)
    3. ⓒ x2⋅x5⋅x3x2⋅x5⋅x3
    Answer

     

    1.  
    2.  
    3.  

     

    TRY IT #1

     

    Write each of the following products with a single base. Do not simplify further.

     

    1. ⓐ k6⋅k9k6⋅k9
    2. ⓑ (2y)4⋅(2y)(2y)4⋅(2y)
    3. ⓒ t3⋅t6⋅t5t3⋅t6⋅t5

     

    Using the Quotient Rule of Exponents

     

    The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but different exponents. In a similar way to the product rule, we can simplify an expression such as ymyn,ymyn, where m>n.m>n. Consider the example y9y5.y9y5. Perform the division by canceling common factors.

     

    y9y5====y⋅y⋅y⋅y⋅y⋅y⋅y⋅y⋅yy⋅y⋅y⋅y⋅yy⋅y⋅y⋅y⋅y⋅y⋅y⋅y⋅yy⋅y⋅y⋅y⋅yy⋅y⋅y⋅y1y4y9y5=y⋅y⋅y⋅y⋅y⋅y⋅y⋅y⋅yy⋅y⋅y⋅y⋅y=y⋅y⋅y⋅y⋅y⋅y⋅y⋅y⋅yy⋅y⋅y⋅y⋅y=y⋅y⋅y⋅y1=y4

     

    Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend.

     

    aman=am−naman=am−n

     

    In other words, when dividing exponential expressions with the same base, we write the result with the common base and subtract the exponents.

     

    y9y5=y9−5=y4y9y5=y9−5=y4

     

    For the time being, we must be aware of the condition m>n.m>n. Otherwise, the difference m−nm−n could be zero or negative. Those possibilities will be explored shortly. Also, instead of qualifying variables as nonzero each time, we will simplify matters and assume from here on that all variables represent nonzero real numbers.

     

    THE QUOTIENT RULE OF EXPONENTS

     

    For any real number aa and natural numbers mm and n,n, such that m>n,m>n, the quotient rule of exponents states that

     

    aman=am−naman=am−n

     

    EXAMPLE 2

     

    Using the Quotient Rule

     

    Write each of the following products with a single base. Do not simplify further.

     

    1. ⓐ (−2)14(−2)9(−2)14(−2)9
    2. ⓑ t23t15t23t15
    3. ⓒ (z2√)5z2√(z2)5z2

     

    Answer

     

    1.  
    2.  
    3.  

     

    TRY IT #2

     

    Write each of the following products with a single base. Do not simplify further.

     

    1. ⓐ s75s68s75s68
    2. ⓑ (−3)6−3(−3)6−3
    3. ⓒ (ef2)5(ef2)3(ef2)5(ef2)3

     

    Using the Power Rule of Exponents

     

    Suppose an exponential expression is raised to some power. Can we simplify the result? Yes. To do this, we use the power rule of exponents. Consider the expression (x2)3.(x2)3. The expression inside the parentheses is multiplied twice because it has an exponent of 2. Then the result is multiplied three times because the entire expression has an exponent of 3.

     

    (x2)3====(x2)⋅(x2)⋅(x2)3factors⎛⎝x⋅x2factors⎞⎠⋅⎛⎝x⋅x2factors⎞⎠⋅⎛⎝x⋅x2factors⎞⎠3factorsx⋅x⋅x⋅x⋅x⋅xx6(x2)3=(x2)⋅(x2)⋅(x2)3factors=(x⋅x︷2factors)⋅(x⋅x︷2factors)⋅(x⋅x︷2factors)3factors=x⋅x⋅x⋅x⋅x⋅x=x6

     

    The exponent of the answer is the product of the exponents: (x2)3=x2⋅3=x6.(x2)3=x2⋅3=x6. In other words, when raising an exponential expression to a power, we write the result with the common base and the product of the exponents.

     

    (am)n=am⋅n(am)n=am⋅n

     

    Be careful to distinguish between uses of the product rule and the power rule. When using the product rule, different terms with the same bases are raised to exponents. In this case, you add the exponents. When using the power rule, a term in exponential notation is raised to a power. In this case, you multiply the exponents.

     

    53⋅54x5⋅x2(3a)7⋅(3a)10===Product Rule53+4x5+2(3a)7+10===57x7(3a)17butbutbut(53)4(x5)2((3a)7)10Power Rule===53⋅4x5⋅2(3a)7⋅10===512x10(3a)70Product RulePower Rule53⋅54=53+4=57but(53)4=53⋅4=512x5⋅x2=x5+2=x7but(x5)2=x5⋅2=x10(3a)7⋅(3a)10=(3a)7+10=(3a)17but((3a)7)10=(3a)7⋅10=(3a)70

     

    THE POWER RULE OF EXPONENTS

     

    For any real number aa and positive integers mm and n,n, the power rule of exponents states that

     

    (am)n=am⋅n(am)n=am⋅n

     

    EXAMPLE 3

     

    Using the Power Rule

     

    Write each of the following products with a single base. Do not simplify further.

     

    1. ⓐ (x2)7(x2)7
    2. ⓑ ((2t)5)3((2t)5)3
    3. ⓒ ((−3)5)11((−3)5)11

     

    Answer

     

    1.  
    2.  
    3.  

     

    TRY IT #3

     

    Write each of the following products with a single base. Do not simplify further.

     

    1. ⓐ ((3y)8)3((3y)8)3
    2. ⓑ (t5)7(t5)7
    3. ⓒ ((−g)4)4((−g)4)4

     

    Using the Zero Exponent Rule of Exponents

     

    Return to the quotient rule. We made the condition that m>nm>n so that the difference m−nm−n would never be zero or negative. What would happen if m=n?m=n? In this case, we would use the zero exponent rule of exponents to simplify the expression to 1. To see how this is done, let us begin with an example.

     

    t8t8=t8t8=1t8t8=t8t8=1

     

    If we were to simplify the original expression using the quotient rule, we would have

     

    t8t8=t8−8=t0t8t8=t8−8=t0

     

    If we equate the two answers, the result is t0=1.t0=1. This is true for any nonzero real number, or any variable representing a real number.

     

    a0=1a0=1

     

    The sole exception is the expression 00.00. This appears later in more advanced courses, but for now, we will consider the value to be undefined.

     

    THE ZERO EXPONENT RULE OF EXPONENTS

     

    For any nonzero real number a,a, the zero exponent rule of exponents states that

     

    a0=1a0=1

     

    EXAMPLE 4

     

    Using the Zero Exponent Rule

     

    Simplify each expression using the zero exponent rule of exponents.

     

    1. ⓐ c3c3c3c3
    2. ⓑ −3x5x5−3x5x5
    3. ⓒ (j2k)4(j2k)⋅(j2k)3(j2k)4(j2k)⋅(j2k)3
    4. ⓓ 5(rs2)2(rs2)25(rs2)2(rs2)2

     

    Answer

     

     

    TRY IT #4

     

    Simplify each expression using the zero exponent rule of exponents.

     

    1. ⓐ t7t7t7t7
    2. ⓑ (de2)112(de2)11(de2)112(de2)11
    3. ⓒ w4⋅w2w6w4⋅w2w6
    4. ⓓ t3⋅t4t2⋅t5t3⋅t4t2⋅t5

     

    Using the Negative Rule of Exponents

     

    Another useful result occurs if we relax the condition that m>nm>n in the quotient rule even further. For example, can we simplify h3h5?h3h5? When m<nm<n —that is, where the difference m−nm−n is negative—we can use the negative rule of exponents to simplify the expression to its reciprocal.

     

    Divide one exponential expression by another with a larger exponent. Use our example, h3h5.h3h5.

     

    h3h5====h⋅h⋅hh⋅h⋅h⋅h⋅hh⋅h⋅hh⋅h⋅h⋅h⋅h1h⋅h1h2h3h5=h⋅h⋅hh⋅h⋅h⋅h⋅h=h⋅h⋅hh⋅h⋅h⋅h⋅h=1h⋅h=1h2

     

    If we were to simplify the original expression using the quotient rule, we would have

     

    h3h5==h3−5h−2h3h5=h3−5=h−2

     

    Putting the answers together, we have h−2=1h2.h−2=1h2. This is true for any nonzero real number, or any variable representing a nonzero real number.

     

    A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction bar—from numerator to denominator or vice versa.

     

    a−n=1anandan=1a−na−n=1anandan=1a−n

     

    We have shown that the exponential expression anan is defined when nn is a natural number, 0, or the negative of a natural number. That means that anan is defined for any integer n.n. Also, the product and quotient rules and all of the rules we will look at soon hold for any integer n.n.

     

    THE NEGATIVE RULE OF EXPONENTS

     

    For any nonzero real number aa and natural number n,n, the negative rule of exponents states that

     

    a−n=1ana−n=1an

     

    EXAMPLE 5

     

    Using the Negative Exponent Rule

     

    Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

     

    1. ⓐ θ3θ10θ3θ10
    2. ⓑ z2⋅zz4z2⋅zz4
    3. ⓒ (−5t3)4(−5t3)8(−5t3)4(−5t3)8

     

    Answer

     

    1.  
    2.  
    3.  

     

    TRY IT #5

     

    Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

     

    1. ⓐ (−3t)2(−3t)8(−3t)2(−3t)8
    2. ⓑ f47f49⋅ff47f49⋅f
    3. ⓒ 2k45k72k45k7

     

    EXAMPLE 6

     

    Using the Product and Quotient Rules

     

    Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.

     

    1. ⓐ b2⋅b−8b2⋅b−8
    2. ⓑ (−x)5⋅(−x)−5(−x)5⋅(−x)−5
    3. ⓒ −7z(−7z)5−7z(−7z)5

     

    Answer

     

    1.  
    2.  
    3.  

     

    TRY IT #6

     

    Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.

     

    1. ⓐ t−11⋅t6t−11⋅t6
    2. ⓑ 2512251325122513

     

    Finding the Power of a Product

     

    To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents, which breaks up the power of a product of factors into the product of the powers of the factors. For instance, consider (pq)3.(pq)3. We begin by using the associative and commutative properties of multiplication to regroup the factors.

     

    (pq)3====(pq)⋅(pq)⋅(pq)3factorsp⋅q⋅p⋅q⋅p⋅qp⋅p⋅p3factors⋅q⋅q⋅q3factorsp3⋅q3(pq)3= (pq)⋅(pq)⋅(pq) 3factors=p⋅q⋅p⋅q⋅p⋅q= p⋅p⋅p 3factors⋅ q⋅q⋅q 3factors=p3⋅q3

     

    In other words, (pq)3=p3⋅q3.(pq)3=p3⋅q3.

     

    THE POWER OF A PRODUCT RULE OF EXPONENTS

     

    For any real numbers aa and bb and any integer n,n, the power of a product rule of exponents states that

     

    (ab)n=anbn(ab)n=anbn

     

    EXAMPLE 7

     

    Using the Power of a Product Rule

     

    Simplify each of the following products as much as possible using the power of a product rule. Write answers with positive exponents.

     

    1. ⓐ (ab2)3(ab2)3
    2. ⓑ (2t)15(2t)15
    3. ⓒ (−2w3)3(−2w3)3
    4. ⓓ 1(−7z)41(−7z)4
    5. ⓔ (e−2f2)7(e−2f2)7

     

    Answer

     

    1.  
    2.  
    3.  
    4.  
    5.  

     

    TRY IT #7

     

    Simplify each of the following products as much as possible using the power of a product rule. Write answers with positive exponents.

     

    1. ⓐ (g2h3)5(g2h3)5
    2. ⓑ (5t)3(5t)3
    3. ⓒ (−3y5)3(−3y5)3
    4. ⓓ 1(a6b7)31(a6b7)3
    5. ⓔ (r3s−2)4(r3s−2)4

     

    Finding the Power of a Quotient

     

    To simplify the power of a quotient of two expressions, we can use the power of a quotient rule, which states that the power of a quotient of factors is the quotient of the powers of the factors. For example, let’s look at the following example.

     

    (e−2f2)7=f14e14(e−2f2)7=f14e14

     

    Let’s rewrite the original problem differently and look at the result.

     

    (e−2f2)7==(f2e2)7f14e14(e−2f2)7=( f2 e2)7=f14e14

     

    It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule.

     

    (e−2f2)7====(f2e2)7(f2)7(e2)7f2⋅7e2⋅7f14e14(e−2f2)7=(f2e2)7=(f2)7(e2)7=f2⋅7e2⋅7=f14e14

     

    THE POWER OF A QUOTIENT RULE OF EXPONENTS

     

    For any real numbers aa and bb and any integer n,n, the power of a quotient rule of exponents states that

     

    (ab)n=anbn(ab)n=anbn

     

    EXAMPLE 8

     

    Using the Power of a Quotient Rule

     

    Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with positive exponents.

     

    1. ⓐ (4z11)3(4z11)3
    2. ⓑ (pq3)6(pq3)6
    3. ⓒ (−1t2)27(−1t2)27
    4. ⓓ (j3k−2)4(j3k−2)4
    5. ⓔ (m−2n−2)3(m−2n−2)3

     

    Answer

     

    1.  
    2.  
    3.  
    4.  
    5.  

     

    TRY IT #8

     

    Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with positive exponents.

     

    1. ⓐ (b5c)3(b5c)3
    2. ⓑ (5u8)4(5u8)4
    3. ⓒ (−1w3)35(−1w3)35
    4. ⓓ (p−4q3)8(p−4q3)8
    5. ⓔ (c−5d−3)4(c−5d−3)4

     

    Simplifying Exponential Expressions

     

    Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the expression more simply with fewer terms. The rules for exponents may be combined to simplify expressions.

     

    EXAMPLE 9

     

    Simplifying Exponential Expressions

     

    Simplify each expression and write the answer with positive exponents only.

     

    1. ⓐ (6m2n−1)3(6m2n−1)3
    2. ⓑ 175⋅17−4⋅17−3175⋅17−4⋅17−3
    3. ⓒ (u−1vv−1)2(u−1vv−1)2
    4. ⓓ (−2a3b−1)(5a−2b2)(−2a3b−1)(5a−2b2)
    5. ⓔ (x22–√)4(x22–√)−4(x22)4(x22)−4
    6. ⓕ (3w2)5(6w−2)2(3w2)5(6w−2)2

     

    Answer

     

    1.  
    2.  
    3.  
    4.  
    5.  
    6.  

     

    TRY IT #9

     

    Simplify each expression and write the answer with positive exponents only.

     

    1. ⓐ (2uv−2)−3(2uv−2)−3
    2. ⓑ x8⋅x−12⋅xx8⋅x−12⋅x
    3. ⓒ (e2f−3f−1)2(e2f−3f−1)2
    4. ⓓ (9r−5s3)(3r6s−4)(9r−5s3)(3r6s−4)
    5. ⓔ (49tw−2)−3(49tw−2)3(49tw−2)−3(49tw−2)3
    6. ⓕ (2h2k)4(7h−1k2)2(2h2k)4(7h−1k2)2

     

    Using Scientific Notation

     

    Recall at the beginning of the section that we found the number 1.3×10131.3×1013 when describing bits of information in digital images. Other extreme numbers include the width of a human hair, which is about 0.00005 m, and the radius of an electron, which is about 0.00000000000047 m. How can we effectively work read, compare, and calculate with numbers such as these?

     

    A shorthand method of writing very small and very large numbers is called scientific notation, in which we express numbers in terms of exponents of 10. To write a number in scientific notation, move the decimal point to the right of the first digit in the number. Write the digits as a decimal number between 1 and 10. Count the number of places n that you moved the decimal point. Multiply the decimal number by 10 raised to a power of n. If you moved the decimal left as in a very large number, nn is positive. If you moved the decimal right as in a small large number, nn is negative.

     

    For example, consider the number 2,780,418. Move the decimal left until it is to the right of the first nonzero digit, which is 2.

     

    The number 2,780,418 is written with an arrow extending to another number: 2.780418. An arrow tracking the movement of the decimal point runs underneath the number. Above the number a label on the number reads: 6 places left.

     

    We obtain 2.780418 by moving the decimal point 6 places to the left. Therefore, the exponent of 10 is 6, and it is positive because we moved the decimal point to the left. This is what we should expect for a large number.

     

    2.780418×1062.780418×106

     

    Working with small numbers is similar. Take, for example, the radius of an electron, 0.00000000000047 m. Perform the same series of steps as above, except move the decimal point to the right.

     

    The number 0.00000000000047 is written with an arrow extending to another number: 00000000000004.7. An arrow tracking the movement of the decimal point runs underneath the number. Above the number a label on the number reads: 13 places right.

     

    Be careful not to include the leading 0 in your count. We move the decimal point 13 places to the right, so the exponent of 10 is 13. The exponent is negative because we moved the decimal point to the right. This is what we should expect for a small number.

     

    4.7×10−134.7×10−13

     

    SCIENTIFIC NOTATION

     

    A number is written in scientific notation if it is written in the form a×10n,a×10n, where 1≤|a|<101≤| a |<10 and nn is an integer.

     

    EXAMPLE 10

     

    Converting Standard Notation to Scientific Notation

     

    Write each number in scientific notation.

     

    ⓐDistance to Andromeda Galaxy from Earth: 24,000,000,000,000,000,000,000 m

     

    ⓑDiameter of Andromeda Galaxy: 1,300,000,000,000,000,000,000 m

     

    ⓒNumber of stars in Andromeda Galaxy: 1,000,000,000,000

     

    ⓓDiameter of electron: 0.00000000000094 m

     

    ⓔProbability of being struck by lightning in any single year: 0.00000143

     

    Answer

     

     

    Analysis

     

    Observe that, if the given number is greater than 1, as in examples a–c, the exponent of 10 is positive; and if the number is less than 1, as in examples d–e, the exponent is negative.

     

    TRY IT #10

     

    Write each number in scientific notation.

     

    1. ⓐU.S. national debt per taxpayer (April 2014): $152,000
    2. ⓑWorld population (April 2014): 7,158,000,000
    3. ⓒWorld gross national income (April 2014): $85,500,000,000,000
    4. ⓓTime for light to travel 1 m: 0.00000000334 s
    5. ⓔProbability of winning lottery (match 6 of 49 possible numbers): 0.0000000715

     

    Converting from Scientific to Standard Notation

     

    To convert a number in scientific notation to standard notation, simply reverse the process. Move the decimal nn places to the right if nn is positive or nn places to the left if nn is negative and add zeros as needed. Remember, if nn is positive, the absolute value of the number is greater than 1, and if nn is negative, the absolute value of the number is less than one.

     

    EXAMPLE 11

     

    Converting Scientific Notation to Standard Notation

     

    Convert each number in scientific notation to standard notation.

     

    1. ⓐ 3.547×10143.547×1014
    2. ⓑ −2×106−2×106
    3. ⓒ 7.91×10−77.91×10−7
    4. ⓓ −8.05×10−12−8.05×10−12

     

    Answer

     

    1.  
    2.  
    3.  
    4.  

     

    TRY IT #11

     

    Convert each number in scientific notation to standard notation.

     

    1. ⓐ 7.03×1057.03×105
    2. ⓑ −8.16×1011−8.16×1011
    3. ⓒ −3.9×10−13−3.9×10−13
    4. ⓓ 8×10−68×10−6

     

    Using Scientific Notation in Applications

     

    Scientific notation, used with the rules of exponents, makes calculating with large or small numbers much easier than doing so using standard notation. For example, suppose we are asked to calculate the number of atoms in 1 L of water. Each water molecule contains 3 atoms (2 hydrogen and 1 oxygen). The average drop of water contains around 1.32×10211.32×1021 molecules of water and 1 L of water holds about 1.22×1041.22×104 average drops. Therefore, there are approximately 3⋅(1.32×1021)⋅(1.22×104)≈4.83×10253⋅(1.32×1021)⋅(1.22×104)≈4.83×1025 atoms in 1 L of water. We simply multiply the decimal terms and add the exponents. Imagine having to perform the calculation without using scientific notation!

     

    When performing calculations with scientific notation, be sure to write the answer in proper scientific notation. For example, consider the product (7×104)⋅(5×106)=35×1010.(7×104)⋅(5×106)=35×1010. The answer is not in proper scientific notation because 35 is greater than 10. Consider 35 as 3.5×10.3.5×10. That adds a ten to the exponent of the answer.

     

    (35)×1010=(3.5×10)×1010=3.5×(10×1010)=3.5×1011(35)×1010=(3.5×10)×1010=3.5×(10×1010)=3.5×1011

     

    EXAMPLE 12

     

    Using Scientific Notation

     

    Perform the operations and write the answer in scientific notation.

     

    1. ⓐ (8.14×10−7)(6.5×1010)(8.14×10−7)(6.5×1010)
    2. ⓑ (4×105)÷(−1.52×109)(4×105)÷(−1.52×109)
    3. ⓒ (2.7×105)(6.04×1013)(2.7×105)(6.04×1013)
    4. ⓓ (1.2×108)÷(9.6×105)(1.2×108)÷(9.6×105)
    5. ⓔ (3.33×104)(−1.05×107)(5.62×105)(3.33×104)(−1.05×107)(5.62×105)

     

    Answer

     

    1.  
    2.  
    3.  
    4.  
    5.  

     

    TRY IT #12

     

    Perform the operations and write the answer in scientific notation.

     

    1. ⓐ (−7.5×108)(1.13×10−2)(−7.5×108)(1.13×10−2)
    2. ⓑ (1.24×1011)÷(1.55×1018)(1.24×1011)÷(1.55×1018)
    3. ⓒ (3.72×109)(8×103)(3.72×109)(8×103)
    4. ⓓ (9.933×1023)÷(−2.31×1017)(9.933×1023)÷(−2.31×1017)
    5. ⓔ (−6.04×109)(7.3×102)(−2.81×102)(−6.04×109)(7.3×102)(−2.81×102)

     

    EXAMPLE 13

     

    Applying Scientific Notation to Solve Problems

     

    In April 2014, the population of the United States was about 308,000,000 people. The national debt was about $17,547,000,000,000. Write each number in scientific notation, rounding figures to two decimal places, and find the amount of the debt per U.S. citizen. Write the answer in both scientific and standard notations.

     

    Answer

     

     

    TRY IT #13

     

    An average human body contains around 30,000,000,000,000 red blood cells. Each cell measures approximately 0.000008 m long. Write each number in scientific notation and find the total length if the cells were laid end-to-end. Write the answer in both scientific and standard notations.

     

    MEDIA

     

    Access these online resources for additional instruction and practice with exponents and scientific notation.

     

     

    1.2 Section Exercises

     

    Verbal

     

    1

     

    Is 2323 the same as 32?32? Explain.

     

    2. 

     

    When can you add two exponents?

     

    3

     

    What is the purpose of scientific notation?

     

    4. 

     

    Explain what a negative exponent does.

     

    Numeric

     

    For the following exercises, simplify the given expression. Write answers with positive exponents.

     

    5

     

    9292

     

    6. 

     

    15−215−2

     

    7

     

    32×3332×33

     

    8. 

     

    44÷444÷4

     

    9

     

    (22)−2(22)−2

     

    10. 

     

    (5−8)0(5−8)0

     

    11

     

    113÷114113÷114

     

    12. 

     

    65×6−765×6−7

     

    13

     

    (80)2(80)2

     

    14. 

     

    5−2÷525−2÷52

     

    For the following exercises, write each expression with a single base. Do not simplify further. Write answers with positive exponents.

     

    15

     

    42×43÷4−442×43÷4−4

     

    16. 

     

    6126961269

     

    17

     

    (123×12)10(123×12)10

     

    18. 

     

    106÷(1010)−2106÷(1010)−2

     

    19

     

    7−6×7−37−6×7−3

     

    20. 

     

    (33÷34)5(33÷34)5

     

    For the following exercises, express the decimal in scientific notation.

     

    21

     

    0.0000314

     

    22. 

     

    148,000,000

     

    For the following exercises, convert each number in scientific notation to standard notation.

     

    23

     

    1.6×10101.6×1010

     

    24. 

     

    9.8×10−99.8×10−9

     

    Algebraic

     

    For the following exercises, simplify the given expression. Write answers with positive exponents.

     

    25

     

    a3a2aa3a2a

     

    26. 

     

    mn2m−2mn2m−2

     

    27

     

    (b3c4)2(b3c4)2

     

    28. 

     

    (x−3y2)−5(x−3y2)−5

     

    29

     

    ab2÷d−3ab2÷d−3

     

    30. 

     

    (w0x5)−1(w0x5)−1

     

    31

     

    m4n0m4n0

     

    32. 

     

    y−4(y2)2y−4(y2)2

     

    33

     

    p−4q2p2q−3p−4q2p2q−3

     

    34. 

     

    (l×w)2(l×w)2

     

    35

     

    (y7)3÷x14(y7)3÷x14

     

    36. 

     

    (a23)2(a23)2

     

    37

     

    (25m)÷(50m)(25m)÷(50m)

     

    38. 

     

    (16x√)2y−1(16x)2y−1

     

    39

     

    23(3a)−223(3a)−2

     

    40. 

     

    (ma6)21m3a2(ma6)21m3a2

     

    41

     

    (b−3c)3(b−3c)3

     

    42. 

     

    (x2y13÷y0)2(x2y13÷y0)2

     

    43

     

    (9z3)−2y(9z3)−2y

     

    Real-World Applications

     

    44. 

     

    To reach escape velocity, a rocket must travel at the rate of 2.2×1062.2×106 ft/min. Rewrite the rate in standard notation.

     

    45

     

    A dime is the thinnest coin in U.S. currency. A dime’s thickness measures 1.35×10−31.35×10−3 m. Rewrite the number in standard notation.

     

    46. 

     

    The average distance between Earth and the Sun is 92,960,000 mi. Rewrite the distance using scientific notation.

     

    47

     

    A terabyte is made of approximately 1,099,500,000,000 bytes. Rewrite in scientific notation.

     

    48. 

     

    The Gross Domestic Product (GDP) for the United States in the first quarter of 2014 was $1.71496×1013.$1.71496×1013. Rewrite the GDP in standard notation.

     

    49

     

    One picometer is approximately 3.397×10−113.397×10−11 in. Rewrite this length using standard notation.

     

    50. 

     

    The value of the services sector of the U.S. economy in the first quarter of 2012 was $10,633.6 billion. Rewrite this amount in scientific notation.

     

    Technology

     

    For the following exercises, use a graphing calculator to simplify. Round the answers to the nearest hundredth.

     

    51

     

    (123m334−3)2(123m334−3)2

     

    52. 

     

    173÷152x3173÷152x3

     

    Extensions

     

    For the following exercises, simplify the given expression. Write answers with positive exponents.

     

    53

     

    (32a3)−2(a422)2(32a3)−2(a422)2

     

    54. 

     

    (62−24)2÷(xy)−5(62−24)2÷(xy)−5

     

    55

     

    m2n3a2c−3⋅a−7n−2m2c4m2n3a2c−3⋅a−7n−2m2c4

     

    56. 

     

    (x6y3x3y−3⋅y−7x−3)10(x6y3x3y−3⋅y−7x−3)10

     

    57

     

    ((ab2c)−3b−3)2((ab2c)−3b−3)2

     

    58. 

     

    Avogadro’s constant is used to calculate the number of particles in a mole. A mole is a basic unit in chemistry to measure the amount of a substance. The constant is 6.0221413×1023.6.0221413×1023. Write Avogadro’s constant in standard notation.

     

    59

     

    Planck’s constant is an important unit of measure in quantum physics. It describes the relationship between energy and frequency. The constant is written as 6.62606957×10−34.6.62606957×10−34. Write Planck’s constant in standard notation.

     

    SecurityError: document exceeded 100,000 nodes. (click for details)
    Callstack:
        at (Under_Construction/Algebra_and_Trigonometry_2e_(OpenStax)/01:_Prerequisites/1.03:_Exponents_and_Scientific_Notation), /content/body/div/div/div/section[7]/div/div[6]/section/div/div/section/div/div/ol/li[3]/span[3]/span/math/semantics/annotation-xml/mrow/msup/mrow[1]
    

     


    1.3: Exponents and Scientific Notation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?