Skip to main content
Mathematics LibreTexts

1.9.1: Review Exercises

  • Page ID
    118007
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Real Numbers: Algebra Essentials

    For the following exercises, perform the given operations.

    1.

    ( 532 ) 2 6 ( 532 ) 2 6

    2.

    64÷( 28 )+14÷7 64÷( 28 )+14÷7

    3.

    2 5 2 +6÷2 2 5 2 +6÷2

    For the following exercises, solve the equation.

    4.

    5x+9=−11 5x+9=−11

    5.

    2y+ 4 2 =64 2y+ 4 2 =64

    For the following exercises, simplify the expression.

    6.

    9( y+2 )÷32+1 9( y+2 )÷32+1

    7.

    3m( 4+7 )m 3m( 4+7 )m

    For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive answer.

    8.

    11

    9.

    0

    10.

    5 6 5 6

    11.

    11 11

    Exponents and Scientific Notation

    For the following exercises, simplify the expression.

    12.

    2 2 2 4 2 2 2 4

    13.

    4 5 4 3 4 5 4 3

    14.

    ( a 2 b 3 ) 4 ( a 2 b 3 ) 4

    15.

    6 a 2 a 0 2 a −4 6 a 2 a 0 2 a −4

    16.

    ( xy ) 4 y 3 2 x 5 ( xy ) 4 y 3 2 x 5

    17.

    4 −2 x 3 y −3 2 x 0 4 −2 x 3 y −3 2 x 0

    18.

    ( 2 x 2 y ) −2 ( 2 x 2 y ) −2

    19.

    ( 16 a 3 b 2 ) ( 4a b −1 ) −2 ( 16 a 3 b 2 ) ( 4a b −1 ) −2

    20.

    Write the number in standard notation: 2.1314× 10 −6 2.1314× 10 −6

    21.

    Write the number in scientific notation: 16,340,000

    Radicals and Rational Expressions

    For the following exercises, find the principal square root.

    22.

    121 121

    23.

    196 196

    24.

    361 361

    25.

    75 75

    26.

    162 162

    27.

    32 25 32 25

    28.

    80 81 80 81

    29.

    49 1250 49 1250

    30.

    2 4+ 2 2 4+ 2

    31.

    4 3 +6 3 4 3 +6 3

    32.

    12 5 13 5 12 5 13 5

    33.

    −243 5 −243 5

    34.

    250 3 −8 3 250 3 −8 3

    Polynomials

    For the following exercises, perform the given operations and simplify.

    35.

    (3 x 3 +2x1)+(4 x 2 2x+7) (3 x 3 +2x1)+(4 x 2 2x+7)

    36.

    ( 2y+1 )( 2 y 2 2y5 ) ( 2y+1 )( 2 y 2 2y5 )

    37.

    (2 x 2 +3x6)+(3 x 2 4x+9) (2 x 2 +3x6)+(3 x 2 4x+9)

    38.

    ( 6 a 2 +3a+10 )( 6 a 2 −3a+5 ) ( 6 a 2 +3a+10 )( 6 a 2 −3a+5 )

    39.

    (k+3)(k6) (k+3)(k6)

    40.

    (2h+1)(3h2) (2h+1)(3h2)

    41.

    ( x+1 )( x 2 +1 ) ( x+1 )( x 2 +1 )

    42.

    (m2)( m 2 +2m3) (m2)( m 2 +2m3)

    43.

    ( a+2b )( 3ab ) ( a+2b )( 3ab )

    44.

    ( x+y )( xy ) ( x+y )( xy )

    Factoring Polynomials

    For the following exercises, find the greatest common factor.

    45.

    81p+9pq27 p 2 q 2 81p+9pq27 p 2 q 2

    46.

    12 x 2 y+4x y 2 −18xy 12 x 2 y+4x y 2 −18xy

    47.

    88 a 3 b+4 a 2 b144 a 2 88 a 3 b+4 a 2 b144 a 2

    For the following exercises, factor the polynomial.

    48.

    2 x 2 9x18 2 x 2 9x18

    49.

    8 a 2 +30a27 8 a 2 +30a27

    50.

    d 2 5d66 d 2 5d66

    51.

    x 2 +10x+25 x 2 +10x+25

    52.

    y 2 6y+9 y 2 6y+9

    53.

    4 h 2 12hk+9 k 2 4 h 2 12hk+9 k 2

    54.

    361 x 2 121 361 x 2 121

    55.

    p 3 +216 p 3 +216

    56.

    8 x 3 125 8 x 3 125

    57.

    64 q 3 27 p 3 64 q 3 27 p 3

    58.

    4x (x1) 1 4 +3 (x1) 3 4 4x (x1) 1 4 +3 (x1) 3 4

    59.

    3p ( p+3 ) 1 3 −8 ( p+3 ) 4 3 3p ( p+3 ) 1 3 −8 ( p+3 ) 4 3

    60.

    4r ( 2r1 ) 2 3 5 ( 2r1 ) 1 3 4r ( 2r1 ) 2 3 5 ( 2r1 ) 1 3

    Rational Expressions

    For the following exercises, simplify the expression.

    61.

    x 2 x12 x 2 8x+16 x 2 x12 x 2 8x+16

    62.

    4 y 2 25 4 y 2 20y+25 4 y 2 25 4 y 2 20y+25

    63.

    2 a 2 a3 2 a 2 6a8 5 a 2 19a4 10 a 2 13a3 2 a 2 a3 2 a 2 6a8 5 a 2 19a4 10 a 2 13a3

    64.

    d4 d 2 9 d3 d 2 16 d4 d 2 9 d3 d 2 16

    65.

    m 2 +5m+6 2 m 2 5m3 ÷ 2 m 2 +3m9 4 m 2 4m3 m 2 +5m+6 2 m 2 5m3 ÷ 2 m 2 +3m9 4 m 2 4m3

    66.

    4 d 2 7d2 6 d 2 17d+10 ÷ 8 d 2 +6d+1 6 d 2 +7d10 4 d 2 7d2 6 d 2 17d+10 ÷ 8 d 2 +6d+1 6 d 2 +7d10

    67.

    10 x + 6 y 10 x + 6 y

    68.

    12 a 2 +2a+1 3 a 2 −1 12 a 2 +2a+1 3 a 2 −1

    69.

    1 d + 2 c 6c+12d dc 1 d + 2 c 6c+12d dc

    70.

    3 x 7 y 2 x 3 x 7 y 2 x


    1.9.1: Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?