Skip to main content
Mathematics LibreTexts

3.10.1: Review Exercises

  • Page ID
    118051
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Functions and Function Notation

    For the following exercises, determine whether the relation is a function.

    1.

    { (a,b),(c,d),(e,d) } { (a,b),(c,d),(e,d) }

    2.

    { (5,2),(6,1),(6,2),(4,8) } { (5,2),(6,1),(6,2),(4,8) }

    3.

    y 2 +4=x, y 2 +4=x, for x x the independent variable and y y the dependent variable

    4.

    Is the graph in Figure 1 a function?

    Graph of a parabola.
    Figure 1

    For the following exercises, evaluate f(3);f(2);f(a);f(a);f(a+h). f(3);f(2);f(a);f(a);f(a+h).

    5.

    f(x)=2 x 2 +3x f(x)=2 x 2 +3x

    6.

    f(x)=2| 3x1 | f(x)=2| 3x1 |

    For the following exercises, determine whether the functions are one-to-one.

    7.

    f(x)=3x+5 f(x)=3x+5

    8.

    f(x)=| x3 | f(x)=| x3 |

    For the following exercises, use the vertical line test to determine if the relation whose graph is provided is a function.

    9.
    Graph of a cubic function.
    10.
    Graph of a relation.
    11.
    Graph of a relation.

    For the following exercises, graph the functions.

    12.

    f(x)=| x+1 | f(x)=| x+1 |

    13.

    f(x)= x 2 2 f(x)= x 2 2

    For the following exercises, use Figure 2 to approximate the values.

    Graph of a parabola.
    Figure 2
    14.

    f(2) f(2)

    15.

    f(−2) f(−2)

    16.

    If f(x)=−2, f(x)=−2, then solve for x. x.

    17.

    If f(x)=1, f(x)=1, then solve for x. x.

    For the following exercises, use the function h(t)=16 t 2 +80t h(t)=16 t 2 +80t to find the values in simplest form.

    18.

    h(2)h(1) 21 h(2)h(1) 21

    19.

    h(a)h(1) a1 h(a)h(1) a1

    Domain and Range

    For the following exercises, find the domain of each function, expressing answers using interval notation.

    20.

    f(x)= 2 3x+2 f(x)= 2 3x+2

    21.

    f(x)= x3 x 2 4x12 f(x)= x3 x 2 4x12

    22.

    f(x)= x6 x4 f(x)= x6 x4

    23.

    Graph this piecewise function: f(x)={ x+1       x<2 2x3  x2 f(x)={ x+1       x<2 2x3  x2

    Rates of Change and Behavior of Graphs

    For the following exercises, find the average rate of change of the functions from x=1to x=2. x=1to x=2.

    24.

    f(x)=4x3 f(x)=4x3

    25.

    f(x)=10 x 2 +x f(x)=10 x 2 +x

    26.

    f(x)= 2 x 2 f(x)= 2 x 2

    For the following exercises, use the graphs to determine the intervals on which the functions are increasing, decreasing, or constant.

    27.
    Graph of a parabola.
    28.
    Graph of a cubic function.
    29.
    Graph of a function.
    30.

    Find the local minimum of the function graphed in Exercise 3.27.

    31.

    Find the local extrema for the function graphed in Exercise 3.28.

    32.

    For the graph in Figure 3, the domain of the function is [ 3,3 ]. [ 3,3 ]. The range is [ 10,10 ]. [ 10,10 ]. Find the absolute minimum of the function on this interval.

    33.

    Find the absolute maximum of the function graphed in Figure 3.

    Graph of a cubic function.
    Figure 3
    Composition of Functions

    For the following exercises, find (fg)(x) (fg)(x) and (gf)(x) (gf)(x) for each pair of functions.

    34.

    f(x)=4x,g(x)=4x f(x)=4x,g(x)=4x

    35.

    f(x)=3x+2,g(x)=56x f(x)=3x+2,g(x)=56x

    36.

    f(x)= x 2 +2x,g(x)=5x+1 f(x)= x 2 +2x,g(x)=5x+1

    37.

    f(x)= x+2 ,g(x)= 1 x f(x)= x+2 ,g(x)= 1 x

    38.

    f(x)= x+3 2 ,g(x)= 1x f(x)= x+3 2 ,g(x)= 1x

    For the following exercises, find ( fg ) ( fg ) and the domain for ( fg )(x) ( fg )(x) for each pair of functions.

    39.

    f(x)= x+1 x+4 ,g(x)= 1 x f(x)= x+1 x+4 ,g(x)= 1 x

    40.

    f(x)= 1 x+3 ,g(x)= 1 x9 f(x)= 1 x+3 ,g(x)= 1 x9

    41.

    f(x)= 1 x ,g(x)= x f(x)= 1 x ,g(x)= x

    42.

    f(x)= 1 x 2 1 ,g(x)= x+1 f(x)= 1 x 2 1 ,g(x)= x+1

    For the following exercises, express each function H H as a composition of two functions f f and g g where H(x)=(fg)(x). H(x)=(fg)(x).

    43.

    H(x)= 2x1 3x+4 H(x)= 2x1 3x+4

    44.

    H(x)= 1 (3 x 2 4) 3 H(x)= 1 (3 x 2 4) 3

    Transformation of Functions

    For the following exercises, sketch a graph of the given function.

    45.

    f(x)= (x3) 2 f(x)= (x3) 2

    46.

    f(x)= (x+4) 3 f(x)= (x+4) 3

    47.

    f(x)= x +5 f(x)= x +5

    48.

    f(x)= x 3 f(x)= x 3

    49.

    f(x)= x 3 f(x)= x 3

    50.

    f(x)=5 x 4 f(x)=5 x 4

    51.

    f(x)=4[ | x2 |6 ] f(x)=4[ | x2 |6 ]

    52.

    f(x)= (x+2) 2 1 f(x)= (x+2) 2 1

    For the following exercises, sketch the graph of the function g g if the graph of the function f f is shown in Figure 4.

    Graph of f(x)
    Figure 4
    53.

    g(x)=f(x1) g(x)=f(x1)

    54.

    g(x)=3f(x) g(x)=3f(x)

    For the following exercises, write the equation for the standard function represented by each of the graphs below.

    55.
    Graph of an absolute function.
    56.
    Graph of a half circle.

    For the following exercises, determine whether each function below is even, odd, or neither.

    57.

    f(x)=3 x 4 f(x)=3 x 4

    58.

    g(x)= x g(x)= x

    59.

    h(x)= 1 x +3x h(x)= 1 x +3x

    For the following exercises, analyze the graph and determine whether the graphed function is even, odd, or neither.

    60.
    Graph of a parabola.
    61.
    Graph of a parabola.
    62.
    Graph of a cubic function.
    Absolute Value Functions

    For the following exercises, write an equation for the transformation of f(x)=| x |. f(x)=| x |.

    63.
    Graph of f(x).
    64.
    Graph of f(x).
    65.
    Graph of f(x).

    For the following exercises, graph the absolute value function.

    66.

    f(x)=| x5 | f(x)=| x5 |

    67.

    f(x)=| x3 | f(x)=| x3 |

    68.

    f(x)=| 2x4 | f(x)=| 2x4 |

    Inverse Functions

    For the following exercises, find f 1 (x) f 1 (x) for each function.

    69.

    f(x)=9+10x f(x)=9+10x

    70.

    f(x)= x x+2 f(x)= x x+2

    For the following exercise, find a domain on which the function f f is one-to-one and non-decreasing. Write the domain in interval notation. Then find the inverse of f f restricted to that domain.

    71.

    f(x)= x 2 +1 f(x)= x 2 +1

    72.

    Given f( x )= x 3 5 f( x )= x 3 5 and g(x)= x+5 3 : g(x)= x+5 3 :

    1. Find  f(g(x))  f(g(x)) and g(f(x)). g(f(x)).
    2. What does the answer tell us about the relationship between f(x) f(x) and g(x)? g(x)?

    For the following exercises, use a graphing utility to determine whether each function is one-to-one.

    73.

    f(x)= 1 x f(x)= 1 x

    74.

    f(x)=3 x 2 +x f(x)=3 x 2 +x

    75.

    If f( 5 )=2, f( 5 )=2, find f 1 (2). f 1 (2).

    76.

    If f( 1 )=4, f( 1 )=4, find f 1 (4). f 1 (4).


    3.10.1: Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?