Skip to main content
Mathematics LibreTexts

14.2.1: Chapter 1

  • Page ID
    118255
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Try It

    1.1 Real Numbers: Algebra Essentials

    1.
    1. 11 1 11 1
    2. 3 1 3 1
    3. 4 1 4 1
    2.
    1. 4 (or 4.0), terminating;
    2. 0. 615384 ¯ , 0. 615384 ¯ , repeating;
    3. –0.85, terminating
    3.
    1. rational and repeating;
    2. rational and terminating;
    3. irrational;
    4. rational and terminating;
    5. irrational
    4.
    1. positive, irrational; right
    2. negative, rational; left
    3. positive, rational; right
    4. negative, irrational; left
    5. positive, rational; right
    5.
      N W I Q Q'
    a. 35 7 35 7     X X  
    b. 0   X X X  
    c. 169 169 X X X X  
    d. 24 24         X
    e. 4.763763763...       X  
    6.
    1. 10
    2. 2
    3. 4.5
    4. 25
    5. 26
    7.
    1. 11, commutative property of multiplication, associative property of multiplication, inverse property of multiplication, identity property of multiplication;
    2. 33, distributive property;
    3. 26, distributive property;
    4. 4 9 , 4 9 , commutative property of addition, associative property of addition, inverse property of addition, identity property of addition;
    5. 0, distributive property, inverse property of addition, identity property of addition
    8.
     
      Constants Variables
    a. 2πr( r+h ) 2πr( r+h ) 2,π 2,π r,h r,h
    b. 2(L + W) 2 L, W
    c. 4 y 3 +y 4 y 3 +y 4 y y
    9.
    1. 5;
    2. 11;
    3. 9;
    4. 26
    10.
    1. 4;
    2. 11;
    3. 121 3 π 121 3 π ;
    4. 1728;
    5. 3
    11.

    1,152 cm2

    12.
    1. −2y−2zor −2( y+z ); −2y−2zor −2( y+z );
    2. 2 t −1; 2 t −1;
    3. 3pq−4p+q; 3pq−4p+q;
    4. 7r−2s+6 7r−2s+6
    13.

    A=P( 1+rt ) A=P( 1+rt )

    1.2 Exponents and Scientific Notation

    1.
    1. k 15 k 15
    2. ( 2 y ) 5 ( 2 y ) 5
    3. t 14 t 14
    2.
    1. s 7 s 7
    2. ( −3 ) 5 ( −3 ) 5
    3. ( e f 2 ) 2 ( e f 2 ) 2
    3.
    1. ( 3y ) 24 ( 3y ) 24
    2. t 35 t 35
    3. ( g ) 16 ( g ) 16
    4.
    1. 1 1
    2. 1 2 1 2
    3. 1 1
    4. 1 1
    5.
    1. 1 ( −3t ) 6 1 ( −3t ) 6
    2. 1 f 3 1 f 3
    3. 2 5 k 3 2 5 k 3
    6.
    1. t −5 = 1 t 5 t −5 = 1 t 5
    2. 1 25 1 25
    7.
    1. g 10 h 15 g 10 h 15
    2. 125 t 3 125 t 3
    3. −27 y 15 −27 y 15
    4. 1 a 18 b 21 1 a 18 b 21
    5. r 12 s 8 r 12 s 8
    8.
    1. b 15 c 3 b 15 c 3
    2. 625 u 32 625 u 32
    3. −1 w 105 −1 w 105
    4. q 24 p 32 q 24 p 32
    5. 1 c 20 d 12 1 c 20 d 12
    9.
    1. v 6 8 u 3 v 6 8 u 3
    2. 1 x 3 1 x 3
    3. e 4 f 4 e 4 f 4
    4. 27r s 27r s
    5. 1 1
    6. 16 h 10 49 16 h 10 49
    10.
    1. $1.52× 10 5 $1.52× 10 5
    2. 7.158× 10 9 7.158× 10 9
    3. $8.55× 10 13 $8.55× 10 13
    4. 3.34× 10 −9 3.34× 10 −9
    5. 7.15× 10 −8 7.15× 10 −8
    11.
    1. 703,000 703,000
    2. −816,000,000,000 −816,000,000,000
    3. −0.00000000000039 −0.00000000000039
    4. 0.000008 0.000008
    12.
    1. 8.475× 10 6 8.475× 10 6
    2. 8× 10 8 8× 10 8
    3. 2.976× 10 13 2.976× 10 13
    4. 4.3× 10 6 4.3× 10 6
    5. 1.24× 10 15 1.24× 10 15
    13.

    Number of cells: 3× 10 13 ; 3× 10 13 ; length of a cell: 8× 10 −6 8× 10 −6 m; total length: 2.4× 10 8 2.4× 10 8 m or 240,000,000 240,000,000 m.

    1.3 Radicals and Rational Exponents

    1.
    1. 15 15
    2. 3 3
    3. 4 4
    4. 17 17
    2.

    5| x || y | 2yz . 5| x || y | 2yz . Notice the absolute value signs around x and y? That’s because their value must be positive!

    3.

    10| x | 10| x |

    4.

    x 2 3 y 2 . x 2 3 y 2 . We do not need the absolute value signs for y 2 y 2 because that term will always be nonnegative.

    5.

    b 4 3ab b 4 3ab

    6.

    13 5 13 5

    7.

    0 0

    8.

    6 6 6 6

    9.

    14−7 3 14−7 3

    10.
    1. −6 −6
    2. 6 6
    3. 88 9 3 88 9 3
    11.

    ( 9 ) 5 = 3 5 =243 ( 9 ) 5 = 3 5 =243

    12.

    x (5y) 9 2 x (5y) 9 2

    13.

    28 x 23 15 28 x 23 15

    1.4 Polynomials

    1.

    The degree is 6, the leading term is x 6 , x 6 , and the leading coefficient is −1. −1.

    2.

    2 x 3 +7 x 2 −4x−3 2 x 3 +7 x 2 −4x−3

    3.

    −11 x 3 x 2 +7x−9 −11 x 3 x 2 +7x−9

    4.

    3 x 4 −10 x 3 −8 x 2 +21x+14 3 x 4 −10 x 3 −8 x 2 +21x+14

    5.

    3 x 2 +16x−35 3 x 2 +16x−35

    6.

    16 x 2 −8x+1 16 x 2 −8x+1

    7.

    4 x 2 −49 4 x 2 −49

    8.

    6 x 2 +21xy−29x−7y+9 6 x 2 +21xy−29x−7y+9

    1.5 Factoring Polynomials

    1.

    ( b 2 a)(x+6) ( b 2 a)(x+6)

    2.

    (x−6)(x−1) (x−6)(x−1)

    3.
    1. (2x+3)(x+3) (2x+3)(x+3)
    2. ( 3x−1 )( 2x+1 ) ( 3x−1 )( 2x+1 )
    4.

    (7x−1) 2 (7x−1) 2

    5.

    (9y+10)(9y10) (9y+10)(9y10)

    6.

    (6a+b)(36 a 2 −6ab+ b 2 ) (6a+b)(36 a 2 −6ab+ b 2 )

    7.

    (10x1)( 100 x 2 +10x+1 ) (10x1)( 100 x 2 +10x+1 )

    8.

    (5a−1) 1 4 (17a−2) (5a−1) 1 4 (17a−2)

    1.6 Rational Expressions

    1.

    1 x+6 1 x+6

    2.

    (x+5)(x+6) (x+2)(x+4) (x+5)(x+6) (x+2)(x+4)

    3.

    1 1

    4.

    2(x−7) (x+5)(x−3) 2(x−7) (x+5)(x−3)

    5.

    x 2 y 2 x y 2 x 2 y 2 x y 2

    1.1 Section Exercises

    1.

    irrational number. The square root of two does not terminate, and it does not repeat a pattern. It cannot be written as a quotient of two integers, so it is irrational.

    3.

    The Associative Properties state that the sum or product of multiple numbers can be grouped differently without affecting the result. This is because the same operation is performed (either addition or subtraction), so the terms can be re-ordered.

    5.

    −6 −6

    7.

    −2 −2

    9.

    −9 −9

    11.

    9

    13.

    -2

    15.

    4

    17.

    0

    19.

    9

    21.

    25

    23.

    −6 −6

    25.

    17

    27.

    4

    29.

    14 14

    31.

    −66 −66

    33.

    –12 –12

    35.

    –44 –44

    37.

    –2 –2

    39.

    −14y11 −14y11

    41.

    −4b+1 −4b+1

    43.

    43z3 43z3

    45.

    9y+45 9y+45

    47.

    −6b+6 −6b+6

    49.

    16x 3 16x 3

    51.

    9x 9x

    53.

    1 2 ( 4010 )+5 1 2 ( 4010 )+5

    55.

    irrational number

    57.

    g+4002( 600 )=1200 g+4002( 600 )=1200

    59.

    inverse property of addition

    61.

    68.4

    63.

    true

    65.

    irrational

    67.

    rational

    1.2 Section Exercises

    1.

    No, the two expressions are not the same. An exponent tells how many times you multiply the base. So 2 3 2 3 is the same as 2×2×2, 2×2×2, which is 8. 3 2 3 2 is the same as 3×3, 3×3, which is 9.

    3.

    It is a method of writing very small and very large numbers.

    5.

    81

    7.

    243

    9.

    1 16 1 16

    11.

    1 11 1 11

    13.

    1

    15.

    4 9 4 9

    17.

    12 40 12 40

    19.

    1 7 9 1 7 9

    21.

    3.14× 10 5 3.14× 10 5

    23.

    16,000,000,000

    25.

    a 4 a 4

    27.

    b 6 c 8 b 6 c 8

    29.

    a b 2 d 3 a b 2 d 3

    31.

    m 4 m 4

    33.

    q 5 p 6 q 5 p 6

    35.

    y 21 x 14 y 21 x 14

    37.

    25 25

    39.

    72 a 2 72 a 2

    41.

    c 3 b 9 c 3 b 9

    43.

    y 81 z 6 y 81 z 6

    45.

    0.00135 m

    47.

    1.0995× 10 12 1.0995× 10 12

    49.

    0.00000000003397 in.

    51.

    12,230,590,464 m 66 m 66

    53.

    a 14 1296 a 14 1296

    55.

    n a 9 c n a 9 c

    57.

    1 a 6 b 6 c 6 1 a 6 b 6 c 6

    59.

    0.000000000000000000000000000000000662606957

    1.3 Section Exercises

    1.

    When there is no index, it is assumed to be 2 or the square root. The expression would only be equal to the radicand if the index were 1.

    3.

    The principal square root is the nonnegative root of the number.

    5.

    16

    7.

    10

    9.

    14

    11.

    7 2 7 2

    13.

    9 5 5 9 5 5

    15.

    25

    17.

    2 2

    19.

    2 6 2 6

    21.

    5 6 5 6

    23.

    6 35 6 35

    25.

    2 15 2 15

    27.

    6 10 19 6 10 19

    29.

    1+ 17 2 1+ 17 2

    31.

    7 2 3 7 2 3

    33.

    15 5 15 5

    35.

    20 x 2 20 x 2

    37.

    7 p 7 p

    39.

    17 m 2 m 17 m 2 m

    41.

    2b a 2b a

    43.

    15x 7 15x 7

    45.

    5 y 4 2 5 y 4 2

    47.

    4 7d 7d 4 7d 7d

    49.

    2 2 +2 6x 1−3x 2 2 +2 6x 1−3x

    51.

    w 2w w 2w

    53.

    3 x 3x 2 3 x 3x 2

    55.

    5 n 5 5 5 n 5 5

    57.

    9 m 19m 9 m 19m

    59.

    2 3d 2 3d

    61.

    3 2 x 2 4 2 3 2 x 2 4 2

    63.

    6z 2 3 6z 2 3

    65.

    500 feet

    67.

    −5 2 −6 7 −5 2 −6 7

    69.

    mnc a 9 cmn mnc a 9 cmn

    71.

    2 2 x+ 2 4 2 2 x+ 2 4

    73.

    3 3 3 3

    1.4 Section Exercises

    1.

    The statement is true. In standard form, the polynomial with the highest value exponent is placed first and is the leading term. The degree of a polynomial is the value of the highest exponent, which in standard form is also the exponent of the leading term.

    3.

    Use the distributive property, multiply, combine like terms, and simplify.

    5.

    2

    7.

    8

    9.

    2

    11.

    4 x 2 +3x+19 4 x 2 +3x+19

    13.

    3 w 2 +30w+21 3 w 2 +30w+21

    15.

    11 b 4 −9 b 3 +12 b 2 −7b+8 11 b 4 −9 b 3 +12 b 2 −7b+8

    17.

    24 x 2 −4x−8 24 x 2 −4x−8

    19.

    24 b 4 −48 b 2 +24 24 b 4 −48 b 2 +24

    21.

    99 v 2 −202v+99 99 v 2 −202v+99

    23.

    8 n 3 −4 n 2 +72n−36 8 n 3 −4 n 2 +72n−36

    25.

    9 y 2 −42y+49 9 y 2 −42y+49

    27.

    16 p 2 +72p+81 16 p 2 +72p+81

    29.

    9 y 2 −36y+36 9 y 2 −36y+36

    31.

    16 c 2 −1 16 c 2 −1

    33.

    225 n 2 −36 225 n 2 −36

    35.

    −16 m 2 +16 −16 m 2 +16

    37.

    121 q 2 −100 121 q 2 −100

    39.

    16 t 4 +4 t 3 −32 t 2 t+7 16 t 4 +4 t 3 −32 t 2 t+7

    41.

    y 3 −6 y 2 y+18 y 3 −6 y 2 y+18

    43.

    3 p 3 p 2 −12p+10 3 p 3 p 2 −12p+10

    45.

    a 2 b 2 a 2 b 2

    47.

    16 t 2 −40tu+25 u 2 16 t 2 −40tu+25 u 2

    49.

    4 t 2 + x 2 +4t−5txx 4 t 2 + x 2 +4t−5txx

    51.

    24 r 2 +22rd−7 d 2 24 r 2 +22rd−7 d 2

    53.

    32 x 2 −4x−3 32 x 2 −4x−3 m2

    55.

    32 t 3 100 t 2 +40t+38 32 t 3 100 t 2 +40t+38

    57.

    a 4 +4 a 3 c−16a c 3 −16 c 4 a 4 +4 a 3 c−16a c 3 −16 c 4

    1.5 Section Exercises

    1.

    The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable. For example, 4 x 2 4 x 2 and −9 y 2 −9 y 2 don’t have a common factor, but the whole polynomial is still factorable: 4 x 2 −9 y 2 =( 2x+3y )( 2x−3y ). 4 x 2 −9 y 2 =( 2x+3y )( 2x−3y ).

    3.

    Divide the x x term into the sum of two terms, factor each portion of the expression separately, and then factor out the GCF of the entire expression.

    5.

    7m 7m

    7.

    10 m 3 10 m 3

    9.

    y y

    11.

    ( 2a−3 )( a+6 ) ( 2a−3 )( a+6 )

    13.

    ( 3n−11 )( 2n+1 ) ( 3n−11 )( 2n+1 )

    15.

    ( p+1 )( 2p−7 ) ( p+1 )( 2p−7 )

    17.

    ( 5h+3 )( 2h−3 ) ( 5h+3 )( 2h−3 )

    19.

    ( 9d−1 )( d−8 ) ( 9d−1 )( d−8 )

    21.

    ( 12t+13 )( t−1 ) ( 12t+13 )( t−1 )

    23.

    (4x+10)(4x10) (4x+10)(4x10)

    25.

    (11p+13)(11p13) (11p+13)(11p13)

    27.

    (19d+9)(19d9) (19d+9)(19d9)

    29.

    (12b+5c)(12b5c) (12b+5c)(12b5c)

    31.

    ( 7n+12 ) 2 ( 7n+12 ) 2

    33.

    ( 15y+4 ) 2 ( 15y+4 ) 2

    35.

    (5p12) 2 (5p12) 2

    37.

    (x+6)( x 2 6x+36) (x+6)( x 2 6x+36)

    39.

    (5a+7)(25 a 2 35a+49) (5a+7)(25 a 2 35a+49)

    41.

    (4x5)(16 x 2 +20x+25) (4x5)(16 x 2 +20x+25)

    43.

    (5r+12s)(25 r 2 60rs+144 s 2 ) (5r+12s)(25 r 2 60rs+144 s 2 )

    45.

    ( 2c+3 ) 1 4 ( −7c15 ) ( 2c+3 ) 1 4 ( −7c15 )

    47.

    ( x+2 ) 2 5 ( 19x+10 ) ( x+2 ) 2 5 ( 19x+10 )

    49.

    ( 2z9 ) 3 2 ( 27z99 ) ( 2z9 ) 3 2 ( 27z99 )

    51.

    ( 14x−3 )( 7x+9 ) ( 14x−3 )( 7x+9 )

    53.

    ( 3x+5 )( 3x−5 ) ( 3x+5 )( 3x−5 )

    55.

    (2x+5) 2 (2x5) 2 (2x+5) 2 (2x5) 2

    57.

    (4 z 2 +49 a 2 )(2z+7a)(2z7a) (4 z 2 +49 a 2 )(2z+7a)(2z7a)

    59.

    1 ( 4x+9 )( 4x−9 )( 2x+3 ) 1 ( 4x+9 )( 4x−9 )( 2x+3 )

    1.6 Section Exercises

    1.

    You can factor the numerator and denominator to see if any of the terms can cancel one another out.

    3.

    True. Multiplication and division do not require finding the LCD because the denominators can be combined through those operations, whereas addition and subtraction require like terms.

    5.

    y+5 y+6 y+5 y+6

    7.

    3b+3 3b+3

    9.

    x+4 2x+2 x+4 2x+2

    11.

    a+3 a3 a+3 a3

    13.

    3n8 7n3 3n8 7n3

    15.

    c6 c+6 c6 c+6

    17.

    1 1

    19.

    d 2 25 25 d 2 1 d 2 25 25 d 2 1

    21.

    t+5 t+3 t+5 t+3

    23.

    6x5 6x+5 6x5 6x+5

    25.

    p+6 4p+3 p+6 4p+3

    27.

    2d+9 d+11 2d+9 d+11

    29.

    12b+5 3b−1 12b+5 3b−1

    31.

    4y−1 y+4 4y−1 y+4

    33.

    10x+4y xy 10x+4y xy

    35.

    9a7 a 2 2a3 9a7 a 2 2a3

    37.

    2 y 2 y+9 y 2 y2 2 y 2 y+9 y 2 y2

    39.

    5 z 2 +z+5 z 2 z2 5 z 2 +z+5 z 2 z2

    41.

    x+2xy+y x+xy+y+1 x+2xy+y x+xy+y+1

    43.

    2b+7a a b 2 2b+7a a b 2

    45.

    18+ab 4b 18+ab 4b

    47.

    ab ab

    49.

    3 c 2 +3c2 2 c 2 +5c+2 3 c 2 +3c2 2 c 2 +5c+2

    51.

    15x+7 x−1 15x+7 x−1

    53.

    x+9 x−9 x+9 x−9

    55.

    1 y+2 1 y+2

    57.

    4 4

    Review Exercises

    1.

    −5 −5

    3.

    53

    5.

    y=24 y=24

    7.

    32m 32m

    9.

    whole

    11.

    irrational

    13.

    16 16

    15.

    3 a 6 3 a 6

    17.

    x 3 32 y 3 x 3 32 y 3

    19.

    a a

    21.

    1.634× 10 7 1.634× 10 7

    23.

    14

    25.

    5 3 5 3

    27.

    4 2 5 4 2 5

    29.

    7 2 50 7 2 50

    31.

    10 3 10 3

    33.

    −3 −3

    35.

    3 x 3 +4 x 2 +6 3 x 3 +4 x 2 +6

    37.

    5 x 2 x+3 5 x 2 x+3

    39.

    k 2 3k18 k 2 3k18

    41.

    x 3 + x 2 +x+1 x 3 + x 2 +x+1

    43.

    3 a 2 +5ab2 b 2 3 a 2 +5ab2 b 2

    45.

    9p 9p

    47.

    4 a 2 4 a 2

    49.

    (4a3)(2a+9) (4a3)(2a+9)

    51.

    ( x+5 ) 2 ( x+5 ) 2

    53.

    (2h3k) 2 (2h3k) 2

    55.

    (p+6)( p 2 6p+36) (p+6)( p 2 6p+36)

    57.

    (4q3p)(16 q 2 +12pq+9 p 2 ) (4q3p)(16 q 2 +12pq+9 p 2 )

    59.

    ( p+3 ) 1 3 ( −5p24 ) ( p+3 ) 1 3 ( −5p24 )

    61.

    x+3 x4 x+3 x4

    63.

    1 2 1 2

    65.

    m+2 m3 m+2 m3

    67.

    6x+10y xy 6x+10y xy

    69.

    1 6 1 6

    Practice Test

    1.

    rational

    3.

    x=–2 x=–2

    5.

    3,141,500

    7.

    16 16

    9.

    9

    11.

    2x 2x

    13.

    21

    15.

    3 x 4 3 x 4

    17.

    21 6 21 6

    19.

    13 q 3 4 q 2 5q 13 q 3 4 q 2 5q

    21.

    n 3 6 n 2 +12n8 n 3 6 n 2 +12n8

    23.

    (4x+9)(4x9) (4x+9)(4x9)

    25.

    (3c11)(9 c 2 +33c+121) (3c11)(9 c 2 +33c+121)

    27.

    4z3 2z1 4z3 2z1

    29.

    3a+2b 3b 3a+2b 3b


    14.2.1: Chapter 1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?