Skip to main content
Mathematics LibreTexts

14.2.5: Chapter 5

  • Page ID
    118259
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Try It

    5.1 Quadratic Functions

    1.

    The path passes through the origin and has vertex at ( 4,7 ), ( 4,7 ), so h(x)= 7 16 (x+4) 2 +7. h(x)= 7 16 (x+4) 2 +7. To make the shot, h( 7.5 ) h( 7.5 ) would need to be about 4 but h(7.5)1.64; h(7.5)1.64; he doesn’t make it.

    2.

    g(x)= x 2 6x+13 g(x)= x 2 6x+13 in general form; g(x)= (x3) 2 +4 g(x)= (x3) 2 +4 in standard form

    3.

    The domain is all real numbers. The range is f(x) 8 11 , f(x) 8 11 , or [ 8 11 , ). [ 8 11 , ).

    4.

    y-intercept at (0, 13), No x- x- intercepts

    5.
    1. 3 seconds
    2. 256 feet
    3. 7 seconds

    5.2 Power Functions and Polynomial Functions

    1.

    f(x) f(x) is a power function because it can be written as f(x)=8 x 5 . f(x)=8 x 5 . The other functions are not power functions.

    2.

    As x x approaches positive or negative infinity, f( x ) f( x ) decreases without bound: as x±, f(x) x±, f(x) because of the negative coefficient.

    3.

    The degree is 6. The leading term is x 6 . x 6 . The leading coefficient is 1. 1.

    4.

    As x, f(x); as x, f(x). x, f(x); as x, f(x). It has the shape of an even degree power function with a negative coefficient.

    5.

    The leading term is 0.2 x 3 , 0.2 x 3 , so it is a degree 3 polynomial. As x x approaches positive infinity, f( x ) f( x ) increases without bound; as x x approaches negative infinity, f( x ) f( x ) decreases without bound.

    6.

    y-intercept (0,0); (0,0); x-intercepts (0,0),(2,0), (0,0),(2,0), and (5,0) (5,0)

    7.

    There are at most 12 x- x- intercepts and at most 11 turning points.

    8.

    The end behavior indicates an odd-degree polynomial function; there are 3 x- x- intercepts and 2 turning points, so the degree is odd and at least 3. Because of the end behavior, we know that the lead coefficient must be negative.

    9.

    The x- x- intercepts are (2,0),(1,0), (2,0),(1,0), and (5,0), (5,0), the y-intercept is (0,2), (0,2), and the graph has at most 2 turning points.

    5.3 Graphs of Polynomial Functions

    1.

    y-intercept (0,0); (0,0); x-intercepts (0,0),(5,0),(2,0), (0,0),(5,0),(2,0), and (3,0) (3,0)

    2.

    The graph has a zero of –5 with multiplicity 3, a zero of -1 with multiplicity 2, and a zero of 3 with multiplicity 4.

    3.
    Graph of f(x)=(1/4)x(x-1)^4(x+3)^3.
    4.

    Because f f is a polynomial function and since f(1) f(1) is negative and f(2) f(2) is positive, there is at least one real zero between x=1 x=1 and x=2. x=2.

    5.

    f(x)= 1 8 (x2) 3 (x+1) 2 (x4) f(x)= 1 8 (x2) 3 (x+1) 2 (x4)

    6.

    The minimum occurs at approximately the point (0,6.5), (0,6.5), and the maximum occurs at approximately the point (3.5,7). (3.5,7).

    5.4 Dividing Polynomials

    1.

    4 x 2 8x+15 78 4x+5 4 x 2 8x+15 78 4x+5

    2.

    3 x 3 3 x 2 +21x150+ 1,090 x+7 3 x 3 3 x 2 +21x150+ 1,090 x+7

    3.

    3 x 2 4x+1 3 x 2 4x+1

    5.5 Zeros of Polynomial Functions

    1.

    f(3)=412 f(3)=412

    2.

    The zeros are 2, –2, and –4.

    3.

    There are no rational zeros.

    4.

    The zeros are –4,  1 2 ,and 1. –4,  1 2 ,and 1.

    5.

    f(x)= 1 2 x 3 + 5 2 x 2 2x+10 f(x)= 1 2 x 3 + 5 2 x 2 2x+10

    6.

    There must be 4, 2, or 0 positive real roots and 0 negative real roots. The graph shows that there are 2 positive real zeros and 0 negative real zeros.

    7.

    3 meters by 4 meters by 7 meters

    5.6 Rational Functions

    1.

    End behavior: as x±, f(x)0; x±, f(x)0; Local behavior: as x0, f(x) x0, f(x) (there are no x- or y-intercepts)

    2.
    Graph of f(x)=1/(x-3)^2-4 with its vertical asymptote at x=3 and its horizontal asymptote at y=-4.

    The function and the asymptotes are shifted 3 units right and 4 units down. As x3,f(x), x3,f(x), and as x±,f(x)4. x±,f(x)4.

    The function is f(x)= 1 (x3) 2 4. f(x)= 1 (x3) 2 4.

    3.

    12 11 12 11

    4.

    The domain is all real numbers except x=1 x=1 and x=5. x=5.

    5.

    Removable discontinuity at x=5. x=5. Vertical asymptotes: x=0,x=1. x=0,x=1.

    6.

    Vertical asymptotes at x=2 x=2 and x=3; x=3; horizontal asymptote at y=4. y=4.

    7.

    For the transformed reciprocal squared function, we find the rational form. f(x)= 1 (x3) 2 4= 14 (x3) 2 (x3) 2 = 14( x 2 6x+9) (x3)(x3) = 4 x 2 +24x35 x 2 6x+9 f(x)= 1 (x3) 2 4= 14 (x3) 2 (x3) 2 = 14( x 2 6x+9) (x3)(x3) = 4 x 2 +24x35 x 2 6x+9

    Because the numerator is the same degree as the denominator we know that as x±, f(x)4; so y=4 x±, f(x)4; so y=4 is the horizontal asymptote. Next, we set the denominator equal to zero, and find that the vertical asymptote is x=3, x=3, because as x3,f(x). x3,f(x). We then set the numerator equal to 0 and find the x-intercepts are at (2.5,0) (2.5,0) and (3.5,0). (3.5,0). Finally, we evaluate the function at 0 and find the y-intercept to be at ( 0, 35 9 ). ( 0, 35 9 ).

    8.

    Horizontal asymptote at y= 1 2 . y= 1 2 . Vertical asymptotes at x=1 and x=3. x=1 and x=3. y-intercept at ( 0, 4 3 . ) ( 0, 4 3 . )

    x-intercepts at (2,0) and (2,0). (2,0) and (2,0). (2,0) (2,0) is a zero with multiplicity 2, and the graph bounces off the x-axis at this point. (2,0) (2,0) is a single zero and the graph crosses the axis at this point.

    Graph of f(x)=(x+2)^2(x-2)/2(x-1)^2(x-3) with its vertical and horizontal asymptotes.

    5.7 Inverses and Radical Functions

    1.

    f 1 ( f( x ) )= f 1 ( x+5 3 )=3( x+5 3 )5=( x5 )+5=x f 1 ( f( x ) )= f 1 ( x+5 3 )=3( x+5 3 )5=( x5 )+5=x and f( f 1 ( x ) )=f( 3x5 )= ( 3x5 )+5 3 = 3x 3 =x f( f 1 ( x ) )=f( 3x5 )= ( 3x5 )+5 3 = 3x 3 =x

    2.

    f 1 (x)= x 3 4 f 1 (x)= x 3 4

    3.

    f 1 (x)= x1 f 1 (x)= x1

    4.

    f 1 (x)= x 2 3 2 ,x0 f 1 (x)= x 2 3 2 ,x0

    5.

    f 1 (x)= 2x+3 x1 f 1 (x)= 2x+3 x1

    5.8 Modeling Using Variation

    1.

    128 3 128 3

    2.

    9 2 9 2

    3.

    x=20 x=20

    5.1 Section Exercises

    1.

    When written in that form, the vertex can be easily identified.

    3.

    If a=0 a=0 then the function becomes a linear function.

    5.

    If possible, we can use factoring. Otherwise, we can use the quadratic formula.

    7.

    g(x)= (x+1) 2 4, g(x)= (x+1) 2 4, Vertex ( 1,4 ) ( 1,4 )

    9.

    f(x)= ( x+ 5 2 ) 2 33 4 , f(x)= ( x+ 5 2 ) 2 33 4 , Vertex ( 5 2 , 33 4 ) ( 5 2 , 33 4 )

    11.

    f(x)=3 (x1) 2 12, f(x)=3 (x1) 2 12, Vertex (1,12) (1,12)

    13.

    f(x)=3 ( x 5 6 ) 2 37 12 , f(x)=3 ( x 5 6 ) 2 37 12 , Vertex ( 5 6 , 37 12 ) ( 5 6 , 37 12 )

    15.

    Minimum is 17 2 17 2 and occurs at 5 2 . 5 2 . Axis of symmetry is x= 5 2 . x= 5 2 .

    17.

    Minimum is 17 16 17 16 and occurs at 1 8 . 1 8 . Axis of symmetry is x= 1 8 . x= 1 8 .

    19.

    Minimum is 7 2 7 2 and occurs at −3. −3. Axis of symmetry is x=−3. x=−3.

    21.

    Domain is ( , ). ( , ). Range is [2,). [2,).

    23.

    Domain is ( , ). ( , ). Range is [−5,). [−5,).

    25.

    Domain is ( , ). ( , ). Range is [−12,). [−12,).

    27.

    f(x)= x 2 +4x+3 f(x)= x 2 +4x+3

    29.

    f(x)= x 2 -4x+7 f(x)= x 2 -4x+7

    31.

    f(x)= -149 x 2 +649x +8949 f(x)= -149 x 2 +649x +8949

    33.

    f(x)= x 2 -2x+1 f(x)= x 2 -2x+1

    35.

    Vertex: (3, −10), axis of symmetry: x = 3, intercepts: (3+10,0)(3+10,0) and (3-10,0)(3-10,0)

    aa0788f142e80d28542577774d7805100653047a
    37.

    Vertex: ( 7 2 , 37 4 ) ( 7 2 , 37 4 ) , axis of symmetry: x=72 x=72, y-intercept: (0,3) (0,3), x-intercepts: ( 7+37 2 , 0 ), ( 737 2 , 0 ) ( 7+37 2 , 0 ), ( 737 2 , 0 )

    Graph of f(x)=4x^2-12x-3
    39.

    Vertex: (32,-12) (32,-12), axis of symmetry: x=32 x=32, intercept: ( 3+23 2 , 0) ( 3+23 2 , 0) and ( 3-23 2 , 0) ( 3-23 2 , 0)

    18caaf6fa9b07eda89c431152de0bac2bfa428af
    41.

    f(x)= x 2 +2x+3 f(x)= x 2 +2x+3

    43.

    f(x)=-3 x 2 6x1 f(x)=-3 x 2 6x1

    45.

    f(x)=-14 x 2 x+2 f(x)=-14 x 2 x+2

    47.

    f(x)= x 2 +2x+1 f(x)= x 2 +2x+1

    49.

    f(x)= - x 2 +2x f(x)= - x 2 +2x

    50.

    f(x)=2 x 2 f(x)=2 x 2

    53.

    The graph is shifted to the right or left (a horizontal shift).

    55.

    The suspension bridge has 1,000 feet distance from the center.

    57.

    Domain is (,). (,). Range is (-,2]. (-,2].

    59.

    Domain: (-,) (-,) ; range: [100,) [100,)

    61.

    f(x)=2 x 2 +2 f(x)=2 x 2 +2

    63.

    f(x)=- x 2 2 f(x)=- x 2 2

    65.

    f(x)=3 x 2 +6x-15 f(x)=3 x 2 +6x-15

    67.

    75 feet by 50 feet

    69.

    3 and 3; product is 9

    71.

    The revenue reaches the maximum value when 1800 thousand phones are produced.

    73.

    2.449 seconds

    75.

    41 trees per acre

    5.2 Section Exercises

    1.

    The coefficient of the power function is the real number that is multiplied by the variable raised to a power. The degree is the highest power appearing in the function.

    3.

    As x x decreases without bound, so does f( x ). f( x ). As x x increases without bound, so does f( x ). f( x ).

    5.

    The polynomial function is of even degree and leading coefficient is negative.

    7.

    Power function

    9.

    Neither

    11.

    Neither

    13.

    Degree = 2, Coefficient = –2

    15.

    Degree =4, Coefficient = –2

    17.

    As x x, f(x),asx,f(x) f(x),asx,f(x)

    19.

    As x x, f(x),asx,f(x) f(x),asx,f(x)

    21.

    As x x, f(x),asx,f(x) f(x),asx,f(x)

    23.

    As x x, f(x),asx,f(x) f(x),asx,f(x)

    25.

    y-intercept is (0,12), (0,12), t-intercepts are (1,0);(2,0);and (3,0). (1,0);(2,0);and (3,0).

    27.

    y-intercept is (0,16). (0,16). x-intercepts are (2,0) (2,0) and (2,0). (2,0).

    29.

    y-intercept is (0,0). (0,0). x-intercepts are (0,0),(4,0), (0,0),(4,0), and ( 2, 0 ). ( 2, 0 ).

    31.

    3

    33.

    5

    35.

    3

    37.

    5

    39.

    Yes. Number of turning points is 2. Least possible degree is 3.

    41.

    Yes. Number of turning points is 1. Least possible degree is 2.

    43.

    Yes. Number of turning points is 0. Least possible degree is 1.

    45.

    Yes. Number of turning points is 0. Least possible degree is 1.

    47.
     
    x x f( x ) f( x )
    10 9,500
    100 99,950,000
    –10 9,500
    –100 99,950,000

    As x x, f(x),asx,f(x) f(x),asx,f(x)

    49.
     
    x x f( x ) f( x )
    10 –504
    100 –941,094
    –10 1,716
    –100 1,061,106

    As x x, f(x),asx,f(x) f(x),asx,f(x)

    51.
    Graph of f(x)=x^3(x-2).

    The y- y- intercept is ( 0, 0 ). ( 0, 0 ). The x- x- intercepts are ( 0, 0 ),( 2, 0 ). ( 0, 0 ),( 2, 0 ). As x x, f(x),asx,f(x) f(x),asx,f(x)

    53.
    Graph of f(x)=x(14-2x)(10-2x).

    The y- y- intercept is ( 0,0 ) ( 0,0 ) . The x- x- intercepts are ( 0, 0 ),( 5, 0 ),( 7, 0 ). ( 0, 0 ),( 5, 0 ),( 7, 0 ). As x x, f(x),asx,f(x) f(x),asx,f(x)

    55.
    e3f43712a13bd62b7303ef60bd27a8ae27c26e5e

    The y- y- intercept is ( 0, 0 ). ( 0, 0 ). The x- x- intercept is ( 4, 0 ),( 0, 0 ),( 4, 0 ). ( 4, 0 ),( 0, 0 ),( 4, 0 ). Asx Asx, f(x),asx,f(x) f(x),asx,f(x)

    57.
    Graph of f(x)=x^3-27.

    The y- y- intercept is ( 0, 81 ). ( 0, 81 ). The x- x- intercept are ( 3, 0 ),( 3, 0 ). ( 3, 0 ),( 3, 0 ). As x x, f(x),asx,f(x) f(x),asx,f(x)

    59.
    Graph of f(x)=-x^3+x^2+2x.

    The y- y- intercept is ( 0, 0 ). ( 0, 0 ). The x- x- intercepts are ( 3, 0 ),( 0, 0 ),( 5, 0 ). ( 3, 0 ),( 0, 0 ),( 5, 0 ). As x x, f(x),asx,f(x) f(x),asx,f(x)

    61.

    f(x)= x 2 4 f(x)= x 2 4

    63.

    f(x)= x 3 4 x 2 +4x f(x)= x 3 4 x 2 +4x

    65.

    f(x)= x 4 +1 f(x)= x 4 +1

    67.

    V(m)=8 m 3 +36 m 2 +54m+27 V(m)=8 m 3 +36 m 2 +54m+27

    69.

    V(x)=4 x 3 32 x 2 +64x V(x)=4 x 3 32 x 2 +64x

    5.3 Section Exercises

    1.

    The x- x- intercept is where the graph of the function crosses the x- x- axis, and the zero of the function is the input value for which f(x)=0. f(x)=0.

    3.

    If we evaluate the function at a a and at b b and the sign of the function value changes, then we know a zero exists between a a and b. b.

    5.

    There will be a factor raised to an even power.

    7.

    (2,0),(3,0),(5,0) (2,0),(3,0),(5,0)

    9.

    (3,0),(1,0),(0,0) (3,0),(1,0),(0,0)

    11.

    ( 0,0 ),( 5,0 ),( 2,0 ) ( 0,0 ),( 5,0 ),( 2,0 )

    13.

    ( 0,0 ),( 5,0 ),( 4,0 ) ( 0,0 ),( 5,0 ),( 4,0 )

    15.

    ( 2,0 ),( 2,0 ),( 1,0 ) ( 2,0 ),( 2,0 ),( 1,0 )

    17.

    (2,0),(2,0),( 1 2 ,0 ) (2,0),(2,0),( 1 2 ,0 )

    19.

    ( 1,0 ),( 1,0 ) ( 1,0 ),( 1,0 )

    21.

    (0,0),( 3 ,0),( 3 ,0) (0,0),( 3 ,0),( 3 ,0)

    23.

    ( 0,0 ),( 1,0 )( 1,0 ),( 2,0 ),( 2,0 ) ( 0,0 ),( 1,0 )( 1,0 ),( 2,0 ),( 2,0 )

    25.

    f( 2 )=10 f( 2 )=10 and f( 4 )=28. f( 4 )=28. Sign change confirms.

    27.

    f( 1 )=3 f( 1 )=3 and f( 3 )=77. f( 3 )=77. Sign change confirms.

    29.

    f( 0.01 )=1.000001 f( 0.01 )=1.000001 and f( 0.1 )=7.999. f( 0.1 )=7.999. Sign change confirms.

    31.

    0 with multiplicity 2, 3 2 3 2 with multiplicity 5, 4 with multiplicity 2

    33.

    0 with multiplicity 2, –2 with multiplicity 2

    35.

    2 3 2 3 with multiplicity 5, 5 with multiplicity 2

    37.

    0 with multiplicity 4, 2 with multiplicity 1, −1 with multiplicity 1

    39.

    3 2 3 2 with multiplicity 2, 0 with multiplicity 3

    41.

    0withmultiplicity6, 2 3 withmultiplicity2 0withmultiplicity6, 2 3 withmultiplicity2

    43.

    x-intercepts, ( 1, 0 ) ( 1, 0 ) with multiplicity 2, ( 4, 0 ) ( 4, 0 ) with multiplicity 1, y- y- intercept ( 0, 4 ). ( 0, 4 ). As x,f(x),asx,f(x). x,f(x),asx,f(x).

    Graph of g(x)=(x+4)(x-1)^2.
    45.

    x-intercepts (3,0) (3,0) with multiplicity 3, (2,0) (2,0) with multiplicity 2, y- y- intercept (0,108). (0,108). As x,f(x),asx,f(x). x,f(x),asx,f(x).

    Graph of k(x)=(x-3)^3(x-2)^2.
    47.

    x-intercepts ( 0, 0 ),( 2, 0 ),( 4,0 ) ( 0, 0 ),( 2, 0 ),( 4,0 ) with multiplicity 1, y- y- intercept (0, 0). (0, 0). As x,f(x),asx,f(x). x,f(x),asx,f(x).

    Graph of n(x)=-3x(x+2)(x-4).
    49.

    f(x)= 2 9 (x3)(x+1)(x+3) f(x)= 2 9 (x3)(x+1)(x+3)

    51.

    f(x)= 1 4 (x+2) 2 (x3) f(x)= 1 4 (x+2) 2 (x3)

    53.

    –4, –2, 1, 3 with multiplicity 1

    55.

    –2, 3 each with multiplicity 2

    57.

    f(x)= 2 3 (x+2)(x1)(x3) f(x)= 2 3 (x+2)(x1)(x3)

    59.

    f(x)= 1 3 (x3) 2 (x1) 2 (x+3) f(x)= 1 3 (x3) 2 (x1) 2 (x+3)

    61.

    f(x)=−15 (x1) 2 (x3) 3 f(x)=−15 (x1) 2 (x3) 3

    63.

    f(x)=2( x+3 )( x+2 )( x1 ) f(x)=2( x+3 )( x+2 )( x1 )

    65.

    f(x)= 3 2 ( 2x1 ) 2 ( x6 )( x+2 ) f(x)= 3 2 ( 2x1 ) 2 ( x6 )( x+2 )

    67.

    local max ( .58, –.62 ), ( .58, –.62 ), local min ( .58, –1.38 ) ( .58, –1.38 )

    69.

    global min ( .63, –.47 ) ( .63, –.47 )

    71.

    global min (.75, .89) (.75, .89)

    73.

    f(x)= (x500) 2 (x+200) f(x)= (x500) 2 (x+200)

    75.

    f(x)=4 x 3 36 x 2 +80x f(x)=4 x 3 36 x 2 +80x

    77.

    f(x)=4 x 3 36 x 2 +60x+100 f(x)=4 x 3 36 x 2 +60x+100

    79.

    f(x)=9π( x 3 +5 x 2 +8x+4) f(x)=9π( x 3 +5 x 2 +8x+4)

    5.4 Section Exercises

    1.

    The binomial is a factor of the polynomial.

    3.

    x+6+ 5 x-1 ,quotient:x+6,remainder:5 x+6+ 5 x-1 ,quotient:x+6,remainder:5

    5.

    3x+2,quotient: 3x+2,remainder: 0 3x+2,quotient: 3x+2,remainder: 0

    7.

    x5,quotient:x5,remainder:0 x5,quotient:x5,remainder:0

    9.

    2x7+ 16 x+2 ,quotient:2x7,remainder:16 2x7+ 16 x+2 ,quotient:2x7,remainder:16

    11.

    x2+ 6 3x+1 ,quotient:x2,remainder:6 x2+ 6 3x+1 ,quotient:x2,remainder:6

    13.

    2 x 2 3x+5,quotient:2 x 2 3x+5,remainder:0 2 x 2 3x+5,quotient:2 x 2 3x+5,remainder:0

    15.

    2 x 2 +2x+1+ 10 x4 2 x 2 +2x+1+ 10 x4

    17.

    2 x 2 7x+1 2 2x+1 2 x 2 7x+1 2 2x+1

    19.

    3 x 2 11x+34 106 x+3 3 x 2 11x+34 106 x+3

    21.

    x 2 +5x+1 x 2 +5x+1

    23.

    4 x 2 21x+84 323 x+4 4 x 2 21x+84 323 x+4

    25.

    x 2 14x+49 x 2 14x+49

    27.

    3 x 2 +x+ 2 3x1 3 x 2 +x+ 2 3x1

    29.

    x 3 3x+1 x 3 3x+1

    31.

    x 3 x 2 +2 x 3 x 2 +2

    33.

    x 3 6 x 2 +12x8 x 3 6 x 2 +12x8

    35.

    x 3 9 x 2 +27x27 x 3 9 x 2 +27x27

    37.

    2 x 3 2x+2 2 x 3 2x+2

    39.

    Yes ( x2 )(3 x 3 5) ( x2 )(3 x 3 5)

    41.

    Yes ( x2 )(4 x 3 +8 x 2 +x+2) ( x2 )(4 x 3 +8 x 2 +x+2)

    43.

    No

    45.

    (x1)( x 2 +2x+4) (x1)( x 2 +2x+4)

    47.

    (x5)( x 2 +x+1) (x5)( x 2 +x+1)

    49.

    Quotient:4 x 2 +8x+16,remainder:1 Quotient:4 x 2 +8x+16,remainder:1

    51.

    Quotient:3 x 2 +3x+5,remainder:0 Quotient:3 x 2 +3x+5,remainder:0

    53.

    Quotient: x 3 2 x 2 +4x8,remainder:6 Quotient: x 3 2 x 2 +4x8,remainder:6

    55.

    x 6 x 5 + x 4 x 3 + x 2 x+1 x 6 x 5 + x 4 x 3 + x 2 x+1

    57.

    x 3 x 2 +x1+ 1 x+1 x 3 x 2 +x1+ 1 x+1

    59.

    1+ 1+i xi 1+ 1+i xi

    61.

    1+ 1i x+i 1+ 1i x+i

    63.

    x 2 ix1+ 1i xi x 2 ix1+ 1i xi

    65.

    2 x 2 +3 2 x 2 +3

    67.

    2x+3 2x+3

    69.

    x+2 x+2

    71.

    x3 x3

    73.

    3 x 2 2 3 x 2 2

    5.5 Section Exercises

    1.

    The theorem can be used to evaluate a polynomial.

    3.

    Rational zeros can be expressed as fractions whereas real zeros include irrational numbers.

    5.

    Polynomial functions can have repeated zeros, so the fact that number is a zero doesn’t preclude it being a zero again.

    7.

    106 106

    9.

    0 0

    11.

    255 255

    13.

    1 1

    15.

    2, 1,  1 2 2, 1,  1 2

    17.

    2 2

    19.

    3 3

    21.

    5 2 ,  6 ,  6 5 2 ,  6 ,  6

    23.

    2, 4,  3 2 2, 4,  3 2

    25.

    4, 4, 5 4, 4, 5

    27.

    5, 3,  1 2 5, 3,  1 2

    29.

    1 2 ,  1+ 5 2 ,  1 5 2 1 2 ,  1+ 5 2 ,  1 5 2

    31.

    3 2 3 2

    33.

    2, 3, 1, 2 2, 3, 1, 2

    35.

    1 2 ,  1 2 , 2, 3 1 2 ,  1 2 , 2, 3

    37.

    1, 1,  5 ,  5 1, 1,  5 ,  5

    39.

    3 4 ,  1 2 3 4 ,  1 2

    41.

    2, 3+2i, 32i 2, 3+2i, 32i

    43.

    2 3 , 1+2i, 12i 2 3 , 1+2i, 12i

    45.

    1 2 , 1+4i, 14i 1 2 , 1+4i, 14i

    47.

    1 positive, 1 negative

    Graph of f(x)=x^4-x^2-1.
    49.

    3 or 1 positive, 0 negative

    Graph of f(x)=x^3-2x^2+x-1.
    51.

    0 positive, 3 or 1 negative

    Graph of f(x)=2x^3+37x^2+200x+300.
    53.

    2 or 0 positive, 2 or 0 negative

    Graph of f(x)=2x^4-5x^3-5x^2+5x+3.
    55.

    2 or 0 positive, 2 or 0 negative

    Graph of f(x)=10x^4-21x^2+11.
    57.

    ±5, ±1, ± 5 2 , ± 1 2 ±5, ±1, ± 5 2 , ± 1 2

    59.

    ±1, ± 1 2 , ± 1 3 , ± 1 6 ±1, ± 1 2 , ± 1 3 , ± 1 6

    61.

    1,  1 2 ,  1 3 1,  1 2 ,  1 3

    63.

    2,  1 4 ,  3 2 2,  1 4 ,  3 2

    65.

    5 4 5 4

    67.

    f(x)= 4 9 ( x 3 + x 2 x1 ) f(x)= 4 9 ( x 3 + x 2 x1 )

    69.

    f(x)= 1 5 ( 4 x 3 x ) f(x)= 1 5 ( 4 x 3 x )

    71.

    8 by 4 by 6 inches

    73.

    5.5 by 4.5 by 3.5 inches

    75.

    8 by 5 by 3 inches

    77.

    Radius = 6 meters, Height = 2 meters

    79.

    Radius = 2.5 meters, Height = 4.5 meters

    5.6 Section Exercises

    1.

    The rational function will be represented by a quotient of polynomial functions.

    3.

    The numerator and denominator must have a common factor.

    5.

    Yes. The numerator of the formula of the functions would have only complex roots and/or factors common to both the numerator and denominator.

    7.

    All reals x1, 1 All reals x1, 1

    9.

    All reals x1, 2, 1, 2 All reals x1, 2, 1, 2

    11.

    V.A. at x= 2 5 ; x= 2 5 ; H.A. at y=0; y=0; Domain is all reals x 2 5 x 2 5

    13.

    V.A. at x=4, 9; x=4, 9; H.A. at y=0; y=0; Domain is all reals x4, 9 x4, 9

    15.

    V.A. at x=0, 4, 4; x=0, 4, 4; H.A. at y=0; y=0; Domain is all reals x0,4, 4 x0,4, 4

    17.

    V.A. at x=5; x=5; H.A. at y=0; y=0; Domain is all reals x5,5 x5,5

    19.

    V.A. at x= 1 3 ; x= 1 3 ; H.A. at y= 2 3 ; y= 2 3 ; Domain is all reals x 1 3 . x 1 3 .

    21.

    none

    23.

    x-intercepts none, y-intercept ( 0, 1 4 ) x-intercepts none, y-intercept ( 0, 1 4 )

    25.

    Local behavior: x 1 2 + ,f(x),x 1 2 ,f(x) x 1 2 + ,f(x),x 1 2 ,f(x)

    End behavior: x±,f(x) 1 2 x±,f(x) 1 2

    27.

    Local behavior: x 6 + ,f(x),x 6 ,f(x), x 6 + ,f(x),x 6 ,f(x), End behavior: x±,f(x)2 x±,f(x)2

    29.

    Local behavior: x 1 3 + ,f(x),x 1 3 , x 1 3 + ,f(x),x 1 3 , f(x),x 5 2 + ,f(x),x 5 2 ,f(x) f(x),x 5 2 + ,f(x),x 5 2 ,f(x)

    End behavior: x±,f(x) 1 3 x±,f(x) 1 3

    31.

    y=2x+4 y=2x+4

    33.

    y=2x y=2x

    35.

    V.A.x=0,H.A.y=2 V.A.x=0,H.A.y=2

    Graph of a rational function.
    37.

    V.A.x=2,H.A.y=0 V.A.x=2,H.A.y=0

    Graph of a rational function.
    39.

    V.A.x=4,H.A.y=2;( 3 2 ,0 );( 0, 3 4 ) V.A.x=4,H.A.y=2;( 3 2 ,0 );( 0, 3 4 )

    Graph of p(x)=(2x-3)/(x+4) with its vertical asymptote at x=-4 and horizontal asymptote at y=2.
    41.

    V.A.x=2,H.A.y=0,(0,1) V.A.x=2,H.A.y=0,(0,1)

    Graph of s(x)=4/(x-2)^2 with its vertical asymptote at x=2 and horizontal asymptote at y=0.
    43.

    V.A.x=4,x= 4 3 ,H.A.y=1;(5,0);( 1 3 ,0 );( 0, 5 16 ) V.A.x=4,x= 4 3 ,H.A.y=1;(5,0);( 1 3 ,0 );( 0, 5 16 )

    Graph of f(x)=(3x^2-14x-5)/(3x^2+8x-16) with its vertical asymptotes at x=-4 and x=4/3 and horizontal asymptote at y=1.
    45.

    V.A.x=1,H.A.y=1;( 3,0 );( 0,3 ) V.A.x=1,H.A.y=1;( 3,0 );( 0,3 )

    Graph of a(x)=(x^2+2x-3)/(x^2-1) with its vertical asymptote at x=-1 and horizontal asymptote at y=1.
    47.

    V.A.x=4,S.A.y=2x+9;( 1,0 );( 1 2 ,0 );( 0, 1 4 ) V.A.x=4,S.A.y=2x+9;( 1,0 );( 1 2 ,0 );( 0, 1 4 )

    Graph of h(x)=(2x^2+x-1)/(x-1) with its vertical asymptote at x=4 and slant asymptote at y=2x+9.
    49.

    V.A.x=2,x=4,H.A.y=1,( 1,0 );( 5,0 );( 3,0 );( 0, 15 16 ) V.A.x=2,x=4,H.A.y=1,( 1,0 );( 5,0 );( 3,0 );( 0, 15 16 )

    Graph of w(x)=(x-1)(x+3)(x-5)/(x+2)^2(x-4) with its vertical asymptotes at x=-2 and x=4 and horizontal asymptote at y=1.
    51.

    y=50 x 2 x2 x 2 25 y=50 x 2 x2 x 2 25

    53.

    y=7 x 2 +2x24 x 2 +9x+20 y=7 x 2 +2x24 x 2 +9x+20

    55.

    y= 1 2 x 2 4x+4 x+1 y= 1 2 x 2 4x+4 x+1

    57.

    y=4 x3 x 2 x12 y=4 x3 x 2 x12

    59.

    y= 27(x2) (x+3) (x3)2 y= 27(x2) (x+3) (x3)2

    61.

    y= 1 3 x 2 +x6 x1 y= 1 3 x 2 +x6 x1

    63.

    y=6 (x1) 2 (x+3) (x2) 2 y=6 (x1) 2 (x+3) (x2) 2

    65.
     
    x x 2.01 2.001 2.0001 1.99 1.999
    y y 100 1,000 10,000 –100 –1,000
     
    x x 10 100 1,000 10,000 100,000
    y y .125 .0102 .001 .0001 .00001

    Vertical asymptote x=2, x=2, Horizontal asymptote y=0 y=0

    67.
     
    x x –4.1 –4.01 –4.001 –3.99 –3.999
    y y 82 802 8,002 –798 –7998
     
    x x 10 100 1,000 10,000 100,000
    y y 1.4286 1.9331 1.992 1.9992 1.999992

    Vertical asymptote x=4, x=4, Horizontal asymptote y=2 y=2

    69.
     
    x x –.9 –.99 –.999 –1.1 –1.01
    y y 81 9,801 998,001 121 10,201
     
    x x 10 100 1,000 10,000 100,000
    y y .82645 .9803 .998 .9998  

    Vertical asymptote x=1, x=1, Horizontal asymptote y=1 y=1

    71.

    ( 3 2 , ) ( 3 2 , )

    Graph of f(x)=4/(2x-3).
    73.

    (2,1)(4,) (2,1)(4,)

    Graph of f(x)=(x+2)/(x-1)(x-4).
    75.

    ( 2,4 ) ( 2,4 )

    77.

    ( 2,5 ) ( 2,5 )

    79.

    ( 1,1 ) ( 1,1 )

    81.

    C(t)= 8+2t 300+20t C(t)= 8+2t 300+20t

    83.

    After about 6.12 hours.

    85.

    A(x)=50 x 2 + 800 x . A(x)=50 x 2 + 800 x . 2 by 2 by 5 feet.

    87.

    A(x)=π x 2 + 100 x . A(x)=π x 2 + 100 x . Radius = 2.52 meters.

    5.7 Section Exercises

    1.

    It can be too difficult or impossible to solve for x x in terms of y. y.

    3.

    We will need a restriction on the domain of the answer.

    5.

    f 1 (x)= x +4 f 1 (x)= x +4

    7.

    f 1 (x)= x+3 1 f 1 (x)= x+3 1

    9.

    f 1 (x)= 12x f 1 (x)= 12x

    11.

    f 1 (x)=± x4 2 f 1 (x)=± x4 2

    13.

    f 1 (x)= x1 3 3 f 1 (x)= x1 3 3

    15.

    f 1 (x)= 4x 2 3 f 1 (x)= 4x 2 3

    17.

    f −1 (x)= 3x2 4 ,[ 0, ) f −1 (x)= 3x2 4 ,[ 0, )

    19.

    f −1 (x)= (x-5)2+8 6 f −1 (x)= (x-5)2+8 6

    21.

    f −1 (x)= (3-x)2 f −1 (x)=(3-x)2

    23.

    f −1 (x)= 4x+3 x f −1 (x)= 4x+3 x

    25.

    f −1 (x)= 7x3 1x f −1 (x)= 7x3 1x

    27.

    f −1 (x)= 2x-1 5x+5 f −1 (x)= 2x-1 5x+5

    29.

    f −1 (x)= x+3 2 f −1 (x)= x+3 2

    31.
    c16a2243047e2dda4ea8ebe00e14f78ac7f3bcb7

    f 1 (x)= x2 f 1 (x)= x2

    33.
    20a51e52d764cfcdca9f274e18cfa72e59ab06bd

    f 1 (x)= x3 f 1 (x)= x3

    35.
    1cc744b5fdd07f36406ebb6bf37c7579e468b21e

    f 1 (x)= x3 3 f 1 (x)= x3 3

    37.
    0627c011d388cbfc22e7dd21baf5705521d99a61

    f 1 (x)= x+4 -2 f 1 (x)= x+4 -2

    39.
    5e0d99b3dabf742bed790641fc46fe4e211760c5
    41.
    42e8d0dbfcdee5794fc8208f9ae6b785806e4008

    [-1,0)[1,) [-1,0)[1,)

    43.
    8c5f7f7bb5c36618cc72b5e3d3cdd9742547b34c

    [-3,0](4,) [-3,0](4,)

    45.
    82d59af3d904e8668bc806a3312b357bc545eebb

    [-,-4][-3,3] [-,-4][-3,3]

    47.
    dcfe37e8b086be51d9b399d83fed8c8f65d2e2f5

    (2, 0), (0, 1), (8, 2) (2, 0), (0, 1), (8, 2)

    49.
    db07e0542ef27347d92d7ccedab3242800a39c9a

    (13, 1), (4, 0), (5, 1) (13, 1), (4, 0), (5, 1)

    51.

    f 1 (x)= xb a 3 f 1 (x)= xb a 3

    53.

    f 1 (x)= x 2 -b a f 1 (x)= x 2 -b a

    55.

    f 1 (x)= c x - b a - x f 1 (x)= c x - b a - x

    57.

    t(h)= 600-h 16 t(h)= 600-h 16 , 3.54 seconds

    59.

    r(A)= A 4π , ≈ r(A)= A 4π , ≈ 8.92 in.

    61.

    l(T)=32.2(T2π), ≈ l(T)=32.2(T2π), ≈ 3.26 ft

    63.

    r(A)= A+ 8π 2π r(A)= A+ 8π 2π –2, 3.99 ft

    65.

    r(V)= V 10π , r(V)= V 10π , ≈ 5.64 ft

    5.8 Section Exercises

    1.

    The graph will have the appearance of a power function.

    3.

    No. Multiple variables may jointly vary.

    5.

    y=5 x 2 y=5 x 2

    7.

    y=11944 x 3 y=11944 x 3

    9.

    y=6 x 4 y=6 x 4

    11.

    y= 18 x 2 y= 18 x 2

    13.

    y= 81 x 4 y= 81 x 4

    15.

    y= 20 x 3 y= 20 x 3

    17.

    y=10xzw y=10xzw

    19.

    y=10x z y=10x z

    21.

    y=4 xz w y=4 xz w

    23.

    y=40 xz w t 2 y=40 xz w t 2

    25.

    y=256 y=256

    27.

    y=6 y=6

    29.

    y=6 y=6

    31.

    y=27 y=27

    33.

    y=3 y=3

    35.

    y=18 y=18

    37.

    y=90 y=90

    39.

    y= 81 2 y= 81 2

    41.

    y= 3 4 x 2 y= 3 4 x 2

    Graph of y=3/4(x^2).
    43.

    y= 1 3 x y= 1 3 x

    Graph of y=1/3sqrt(x).
    45.

    y= 4 x 2 y= 4 x 2

    Graph of y=4/(x^2).
    47.

    1.89 years

    49.

    0.61 years

    51.

    3 seconds

    53.

    48 inches

    55.

    49.75 pounds

    57.

    33.33 amperes

    59.

    2.88 inches

    Review Exercises

    1.

    f(x)= (x2) 2 9vertex (2,–9), intercepts (5,0); (–1,0); (0,–5) f(x)= (x2) 2 9vertex (2,–9), intercepts (5,0); (–1,0); (0,–5)

    Graph of f(x)=x^2-4x-5.
    3.

    f(x)= 3 25 ( x+2 ) 2 +3 f(x)= 3 25 ( x+2 ) 2 +3

    5.

    300 meters by 150 meters, the longer side parallel to river.

    7.

    Yes, degree = 5, leading coefficient = 4

    9.

    Yes, degree = 4, leading coefficient = 1

    11.

    Asx,f(x),asx,f(x) Asx,f(x),asx,f(x)

    13.

    –3 with multiplicity 2, 1 2 1 2 with multiplicity 1, –1 with multiplicity 3

    15.

    4 with multiplicity 1

    17.

    1 2 1 2 with multiplicity 1, 3 with multiplicity 3

    19.

    x 2 +4 x 2 +4 with remainder 12

    21.

    x 2 5x+20 61 x+3 x 2 5x+20 61 x+3

    23.

    2 x 2 2x3 2 x 2 2x3 , so factored form is (x+4)(2 x 2 2x3) (x+4)(2 x 2 2x3)

    25.

    { 2, 4,  1 2 } { 2, 4,  1 2 }

    27.

    { 1, 3, 4,  1 2 } { 1, 3, 4,  1 2 }

    29.

    0 or 2 positive, 1 negative

    31.

    Intercepts (–2,0)and( 0, 2 5 ) (–2,0)and( 0, 2 5 ) , Asymptotes x=5 x=5 and y=1. y=1.

    Graph of f(x)=(x+1)/(x-5).
    33.

    Intercepts (3, 0), (-3, 0), and ( 0, 27 2 ) ( 0, 27 2 ), Asymptotes x=1, x=2, y=3. x=1, x=2, y=3.

    Graph of f(x)=(3x^2-27)/(x^2+x-2).
    35.

    y=x2 y=x2

    37.

    f 1 (x)= x +2 f 1 (x)= x +2

    39.

    f 1 (x)= x+11 3 f 1 (x)= x+11 3

    41.

    f 1 (x)= (x+3) 2 5 4 ,x3 f 1 (x)= (x+3) 2 5 4 ,x3

    43.

    y=64 y=64

    45.

    y=72 y=72

    47.

    148.5 pounds

    Practice Test

    1.

    Degree: 5, leading coefficient: −2

    3.

    As x−∞, f(x), As x, f(x) As x−∞, f(x), As x, f(x)

    5.

    f(x)= 3(x-2)2 f(x)=3(x-2)2

    7.

    3 with multiplicity 3, 1313 with multiplicity 1, 1 with multiplicity 2

    9.

    -12-12 with multiplicity 3, 2 with multiplicity 2

    11.

    x3 + 2x2 + 7x + 14 + 24 x-2 x3+2x2+7x+14+ 24 x-2

    13.

    {–3,–1,32} {–3,–1,32}

    15.

    1, −2, and − 3232 (multiplicity 2)

    17.

    f(x)= -23(x-3)2 (x-1) (x+2) f(x)=-23(x-3)2(x-1)(x+2)

    19.

    2 or 0 positive, 1 negative

    21.

    ( -3, 0 ) ( 1, 0 ) ( 0, 3 4 ) (-3,0)(1,0)( 0, 3 4 )

    502c8901acd88cf64fb0297613f0456ce461ba4f
    23.

    f 1 (x)= (x-4)2 +2,x4 f 1 (x)= (x-4)2+2,x4

    25.

    f 1 (x)= x+3 3x-2 f 1 (x)= x+3 3x-2

    27.

    y=20 y=20


    14.2.5: Chapter 5 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?