4.3: Chapter 4 Review Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercises 1 - 4
True or False? Justify your answer with a proof or a counterexample.
- The rectangular coordinates of the point (4,5π6) are (2√3,−2).
- The equations x=cosh(3t),y=2sinh(3t) represent a hyperbola.
- Answer
- True
- The arc length of the spiral given by r=θ2 for 0≤θ≤3π is 94π3 units.
- Given x=f(t) and y=g(t), if dxdy=dydx, then f(t)=g(t)+C, where C is a constant.
- Answer
- False. Imagine y=t+1,x=−t+1.
Exercises 5 -8
Sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.
- x=1+t,y=t2−1,−1≤t≤1
- x=et,y=1−e3t,0≤t≤1
- Answer
-
y=1−x3
- x=sinθ,y=1−cscθ,0≤θ≤2π
- x=4cosϕ,y=1−sinϕ,0≤ϕ≤2π
- Answer
-
x216+(y−1)2=1
- Find the equation of the tangent line to the given curve. Graph both the function and its tangent line.
x=ln(t),y=t2−1,t=1
- Find dydx,dxdy, and d2xdy2 of y=(2+e−t),x=1−sint
- Find the area of the region.
x=t2,y=ln(t),0≤t≤e
- Answer
- e22 units2
- Find the arc length of the curve over the given interval.
x=3t+4,y=9t−2,0≤t≤3
- Answer
- 9√10 units