Skip to main content
Mathematics LibreTexts

2.8: Implicit Functions

  • Page ID
    155807
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We now turn to the topic of implicit differentiation. We say that \(y\) is an implicit function of \(x\) if we are given an equation \[\sigma (x, y) = \tau (x, y) \nonumber\]which determines \(y\) as a function of \(x\). An example is \(x + xy = 2y\). Implicit differentiation is a way of finding the derivative of \(y\) without actually solving for \(y\) as a function of \(x\). Assume that \(dy/dx\) exists. The method has two steps:

    Step 1: Differentiate both sides of the equation \(\sigma(x, y) = \tau (x, y)\) to get a new equation \[\frac{d(\sigma (x, y))}{dx} = \frac{d(\tau(x, y))}{dx}.\]The Chain Rule is often used in this step.

    Step 2: Solve the new Equation \((\PageIndex{1})\) for \(dy/dx\). The answer will usually involve both \(x\) and \(y\).

    In each of the examples below, we assume that \(dy/dx\) exists and use implicit differentiation to find the value of \(dy/dx\).

    Example \(\PageIndex{1}\)

    Given the equation \(x + xy = 2y\), find \(dy/dx\).

    Solution

    Step 1: \(\dfrac{d (x + xy)}{dx} = \dfrac{d(2y)}{dx}\). We find each side by the Sum and Product Rules, \[\begin{align*} \frac{d(x + xy)}{dx} &= \frac{dx + d(xy)}{dx} = \frac{dx + x \ dy + y \ dx}{dx} = 1 + x \frac{dy}{dx} + y. \\ \frac{d(2y)}{dx} &= 2 \frac{dy}{dx} \end{align*}.\]

    Thus our new equation is \[1 + x \frac{dy}{dx} + y = 2 \frac{dy}{dx}. \nonumber\]

    Step 2: Solve for \(dy/dx\). \[\begin{align*} 2 \frac{dy}{dx} - x \frac{dy}{dx} &= 1 + y \\ \frac{dy}{dx} &= \frac{1 + y}{2 - x}. \end{align*}\]

    We can check our answer by solving the original equation for \(y\) and using ordinary differentiation: \[\begin{align*} x + xy &= 2y \\ 2y - xy &= x. \\ y &= \frac{x}{2 - x}. \end{align*}\]

    By the Quotient Rule, \[\frac{dy}{dx} = \frac{(2 - x) \cdot 1 - x(-1)}{(2 - x)^{2}} = \frac{2}{(2 - x)^{2}}. \nonumber\]

    A third way to find \(dy/dx\) is to solve the original equation for \(x\), find \(dx/dy\), and then use the Inverse Function Rule. \[\begin{align*} x + xy &= 2y \\ x &= \frac{2y}{1 + y} \\[4pt] \frac{dx}{dy} &= \frac{(1 + y) \cdot 2 - 2y \cdot 1}{(1 + y)^{2}} = \frac{2}{(1 + y)^{2}} \\[4pt] \frac{dy}{dx} &= \frac{1}{2} (1 + y)^{2} \end{align*}\]

    To see that our three answers \[\frac{dy}{dx} = \frac{1 + y}{2 - x}, \quad \frac{dy}{dx} = \frac{2}{(2-x)^{2}}, \quad \frac{dy}{dx} = \frac{1}{2} (1+y)^{2} \nonumber\]are all the same we substitute \(\dfrac{x}{2-x}\) for \(y\): \[\begin{align*} \frac{dy}{dx} &= \frac{1+y}{2-x} = \frac{1 + \frac{x}{2-x}}{2-x} = \frac{2}{(2-x)^{2}}. \\[4pt] \frac{dy}{dx} &= \frac{1}{2} (1+y)^{2} = \frac{1}{2} \left(1 + \frac{x}{2-x}\right)^{2} = \frac{2}{(2 - x)^{2}} \end{align*}\]

    In Example \(\PageIndex{1}\), we found \(dy/dx\) by three different methods.

    (a) Implicit differentiation. We get \(dy/dx\) in terms of both \(x\) and \(y\).
    (b) Solve for \(y\) as a function of \(x\) and differentiate directly. This gives \(dy/dx\) in terms of \(x\) only.
    (c) Solve for \(x\) as a function of \(y\), find \(dx/dy\) directly, and use the Inverse Function Rule. This method gives \(dy/dx\) in terms of \(y\) only.

    Example \(\PageIndex{2}\)

    Given \(y + \sqrt{y} = x^{2}\), find \(dy/dx\).

    Solution

    \[\begin{align*} \frac{d(y + \sqrt{y})}{dx} &= \frac{d \left(x^{2}\right)}{dx} \\ \frac{dy}{dx} + \frac{1}{2} y^{-1/2} \frac{dy}{dx} &= 2x \\ \frac{dy}{dx} &= \frac{2x}{1 + \frac{1}{2} y^{-1/2}} \end{align*}\]

    This answer can be used to find the slope at any point on the curve. For example, at the point \((\sqrt{2}, 1)\) the slope is \[\frac{2 \sqrt{2}}{1 + \frac{1}{2} \cdot 1^{-1/2}} = \frac{2 \sqrt{2}}{3/2} = \frac{4 \sqrt{2}}{3} \nonumber\]

    while at the point \((-\sqrt{2}, 1)\) the slope is \[\frac{2 (-\sqrt{2})}{1 + \frac{1}{2} \cdot 1^{-1/2}} = \frac{-4 \sqrt{2}}{3}. \nonumber\]

    To get \(dy/dx\) in terms of \(x\), we solve the original equation for \(y\) using the quadratic formula: \[\begin{align*} y + \sqrt{y} - x^{2} &= 0 \\ \sqrt{y} &= \frac{-1 \pm \sqrt{1 + 4x^{2}}}{2} \end{align*}\]

    Since \(\sqrt{y} \geq 0\), only one solution may occur: \[\sqrt{y} = \frac{-1 + \sqrt{1 + 4x^{2}}}{2}. \nonumber\]

    Then \[y = \left(\frac{-1 + \sqrt{1 + 4x^{2}}}{2}\right)^{2} \nonumber\]

    The graph of this function is shown in Figure \(\PageIndex{1}\). By substitution we get \[\frac{dy}{dx} = \frac{2x}{1 + \frac{1}{2} y^{-1/2}} = \frac{2x}{1 + \left(-1 + \sqrt{1 + 4x^{2}}\right)^{-1}}. \nonumber\]

    Graph of the function given in Example 2.
    Figure \(\PageIndex{1}\): Graph of \(y + \sqrt{y} = x^{2}\).

    Often one side of an implicit function equation is constant and has derivative zero.

    Example \(\PageIndex{3}\)

    Given \(x^{2} - 2y^{2} = 4\), \(y \leq 0\), find \(dy/dx\).

    Solution

    \[\begin{align*} \frac{d \left(x^{2} - 2y^{2}\right)}{dx} &= \frac{d(4)}{dx} \\ \frac{d \left(x^{2} - 2y^{2}\right)}{dx} &= 2x - 4y \frac{dy}{dx} \\ \frac{d(4)}{dx} &= 0 \\ 2x - 4y \frac{dy}{dx} &= 0 \\ \frac{dy}{dx} &= \frac{-2x}{-4y} = \frac{x}{2y} \end{align*}\]

    Solving the original equation for \(y\), we get \[\begin{align*} -2y^{2} &= 4 - x^{2}, \quad y \leq 0; \\ y^{2} &= \frac{x^{2} - 4}{2}, \quad y \leq 0; y &= - \sqrt{\frac{x^{2} - 4}{2}}. \end{align*}\]

    Thus \(dy/dx\) in terms of \(x\) is \[\frac{dy}{dx} = \frac{x}{2y} = \frac{x}{-2 \sqrt{\frac{x^{2} - 4}{2}}} = - \frac{x}{2 \left(x^{2} - 4\right)}. \nonumber\]

    The graph of this function is shown in Figure \(\PageIndex{2}\).

    Graph of the function given in Example 3.
    Figure \(\PageIndex{2}\): Graph of \(x^{2} - 2y^{2} = 4, \quad y \leq 0\).

    Implicit differentiation can even be applied to an equation that does not by itself determine \(y\) as a function \(x\). Sometimes extra inequalities must be assumed in order to make \(y\) a function of \(x\).

    Example \(\PageIndex{4}\)

    Given \[x^{2} + y^{2} = 1,\]find \(dy/dx\). This equation does not determine \(y\) as a function of \(x\); its graph is the unit circle. Nevertheless we differentiate both sides with respect to \(x\) and solve for \(dy/dx\), \[2x + 2y \frac{dy}{dx} = 0, \quad \frac{dy}{dx} = -\frac{x}{y}. \nonumber\]

    We can conclude that for any system of formulas \(S\) which contains the Equation \((\PageIndex{2})\) and also determines \(y\) as a function of \(x\), it is true that \[\frac{dy}{dx} = -\frac{x}{y}.\]

    We can use Equation \((\PageIndex{3})\) to find the slope of the line tangent to the unit circle at any point on the circle. The following examples are illustrated in Figure \(\PageIndex{3}\).

    The unit circle, showing the tangent line to several points on the circle.
    Figure \(\PageIndex{3}\): The unit circle and several of its tangent lines.

    \[\begin{align*} &\frac{dy}{dx} = 0 \text{ at } (0, -1), \quad \frac{dy}{dx} = -\frac{1}{\sqrt{3}} \text{ at } \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \\ &\frac{dy}{dx} = \sqrt{8} \text{ at } \left(\frac{\sqrt{8}}{3}, -\frac{1}{3}\right), \quad \frac{dy}{dx} \text{ is undefined at } (-1, 0). \end{align*}\]

    The system of formulas \[x^{2} + y^{2} = 1, \quad y \geq 0 \nonumber\]gives us\[y = \sqrt{1 - x^{2}}, \quad \frac{dy}{dx} = -\frac{x}{y} = -\frac{x}{\sqrt{1 - x^{2}}}. \nonumber\]

    Example \(\PageIndex{5}\)

    Find the slope of the line tangent to the curve \[x^{5} y^{3} + xy^{6} = y + 1.\]at the points \((1, 1)\), \((1, -1)\), and \((0, -1)\).

    Solution

    The three points are all on the curve, and the first two points have the same \(x\) coordinate, so Equation \((\PageIndex{4})\) does not by itself determine \(y\) as a function of \(x\).

    We differentiate with respect to \(x\), \[\frac{d \left(x^{5}y^{3} + xy^{6}\right)}{dx} = \frac{d(y+1)}{dx}, \nonumber\]\[5x^{4} y^{3} + x^{5} \cdot 3y^{2} \ \frac{dy}{dx} + y^{6} + 6xy^{5} \ \frac{dy}{dx} = \frac{dy}{dx}, \nonumber\]

    and then solve for \(dy/dx\), \[5x^{4} y^{3} + y^{6} + \left(3x^{5} y^{2} + 6xy^{5} - 1\right) \frac{dy}{dx} = 0, \nonumber\]\[\frac{dy}{dx} = -\frac{5x^{4} y^{3} + y^{6}}{3x^{5} y^{2} + 6xy^{5} - 1}.\]

    Substituting, we get \[\begin{align*} \frac{dy}{dx} &= -\frac{6}{8} \text{ at } (1, 1). \\[4pt] \frac{dy}{dx} &= -1 \text{ at } (1, -1). \\[4pt] \frac{dy}{dx} &= +1 \text{ at } (0, -1). \end{align*}\]

    Equation \((\PageIndex{5})\) for \(dy/dx\) is true of any system \(S\) of formulas which contains Equation \((\PageIndex{4})\) and determines \(y\) as a function of \(x\).

    Here is what generally happens in the method of implicit differentiation. Given an equation \[\tau (x, y) = \sigma (x, y)\]between two terms which may involve the variables \(x\) and \(y\), we differentiate both sides of the equation and obtain \[\frac{d(\tau (x, y)}{dx} = \frac{d(\sigma (x, y)}{dx}.\]

    We then solve Equation \((\PageIndex{7})\) to get \(dy/dx\) equal to a term which typically involves both \(x\) and \(y\). We can conclude that for any system of formulas which contains Equation \((\PageIndex{6})\) and determines \(y\) as a function of \(x\), Equation \((\PageIndex{7})\) is true. Also, Equation \((\PageIndex{7})\) can be used to find the slope of the tangent line at any point on the curve \(\tau(x, y) = \sigma(x, y)\).

    Problems for Section 2.8

    In Problems 1-26, find \(dy/dx\) by implicit differentiation. The answer may involve both \(x\) and \(y\).

    1. \(xy = 1\) 2. \(2x^{2} - 3y^{2} = 4, \quad y \leq 0\)
    3. \(x^{3} + y^{3} = 2\) 4. \(x^{3} = y^{5}\)
    5. \(y = 1/(x + y)\) 6. \(y^{2} + 3y - 5 = x\)
    7. \(x^{-2} + y^{-2} = 1\) 8. \(xy^{3} = y + x\)
    9. \(x^{2} + 3xy + y^{2} = 0\) 10. \(x/y + 3y = 2\)
    11. \(x^{5} = y^{2} - y + 1\) 12. \(\sqrt{x} + \sqrt{y} = x + y\)
    13. \(y = \sqrt{xy + 1}\) 14. \(x^{4} + y^{4} = 5\)
    15. \(xy^{2} - 3x^{2}y + x = 1\) 16. \(2xy^{-2} + x^{-2} = y\)
    17. \(y = \sin (xy)\) 18. \(y = \cos (x + y)\)
    19. \(x = \cos^{2} y\) 20. \(x = \sin y + \cos y\)
    21. \(y = e^{x + 2y}\) 22. \(e^{y} = x^{2} + y\)
    23. \(e^{x} = \ln y\) 24. \(\ln y = \sin x\)
    25. \(y^{2} = \ln (2x + 3y)\) 26. \(\ln (\cos y) = 2x + 5\)

    In Problems 27-33, find the slope of the line tangent to the given curve at the given point or points.

    27. \(x^{2} + xy + y^{2} = 7 \text{ at } (1,2) \text{ and } (-1, 3)\).
    28. \(x + y^{3} = y \text{ at } (0,0), (0, 1), (0, -1), (-6, 2)\).
    29. \(x^{2} - y^{2} = 3 \text{ at } (2,1), (2, -1), (\sqrt{3}, 0)\).
    30. \(\tan x = y \text{ at } (\pi/4, 1)\)
    31. \(2 \sin^{2} x = 3 \cos y \text{ at } (\pi/3, \pi/3)\)
    32. \(y + e^{y} = 1 + \ln x\) \text{ at } (1, 0)\)
    33. \(e^{\sin x} = \ln y \text{ at } (1, 0)\)
    34. Given the equation \(x^{2} + y^{2} = 1\), find \(dy/dx\) and \(d^{2}y/dx^{2}\).
    35. Given the equation \(2x^{2} - y^{2} = 1\), find \(dy/dx\) and \(d^{2}y/dx^{2}\).
    36. Differentiating the equation \(x^{2} = y^{2}\) implicitly, we get \(dy/dx = x/y\). This is undefined at the point \((0, 0)\(. Sketch the graph of the equation to see what happens at the point \((0, 0)\).

    This page titled 2.8: Implicit Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by H. Jerome Keisler.

    • Was this article helpful?