2.8: Implicit Functions
- Page ID
- 155807
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We now turn to the topic of implicit differentiation. We say that \(y\) is an implicit function of \(x\) if we are given an equation \[\sigma (x, y) = \tau (x, y) \nonumber\]which determines \(y\) as a function of \(x\). An example is \(x + xy = 2y\). Implicit differentiation is a way of finding the derivative of \(y\) without actually solving for \(y\) as a function of \(x\). Assume that \(dy/dx\) exists. The method has two steps:
Step 1: Differentiate both sides of the equation \(\sigma(x, y) = \tau (x, y)\) to get a new equation \[\frac{d(\sigma (x, y))}{dx} = \frac{d(\tau(x, y))}{dx}.\]The Chain Rule is often used in this step.
Step 2: Solve the new Equation \((\PageIndex{1})\) for \(dy/dx\). The answer will usually involve both \(x\) and \(y\).
In each of the examples below, we assume that \(dy/dx\) exists and use implicit differentiation to find the value of \(dy/dx\).
Given the equation \(x + xy = 2y\), find \(dy/dx\).
Solution
Step 1: \(\dfrac{d (x + xy)}{dx} = \dfrac{d(2y)}{dx}\). We find each side by the Sum and Product Rules, \[\begin{align*} \frac{d(x + xy)}{dx} &= \frac{dx + d(xy)}{dx} = \frac{dx + x \ dy + y \ dx}{dx} = 1 + x \frac{dy}{dx} + y. \\ \frac{d(2y)}{dx} &= 2 \frac{dy}{dx} \end{align*}.\]
Thus our new equation is \[1 + x \frac{dy}{dx} + y = 2 \frac{dy}{dx}. \nonumber\]
Step 2: Solve for \(dy/dx\). \[\begin{align*} 2 \frac{dy}{dx} - x \frac{dy}{dx} &= 1 + y \\ \frac{dy}{dx} &= \frac{1 + y}{2 - x}. \end{align*}\]
We can check our answer by solving the original equation for \(y\) and using ordinary differentiation: \[\begin{align*} x + xy &= 2y \\ 2y - xy &= x. \\ y &= \frac{x}{2 - x}. \end{align*}\]
By the Quotient Rule, \[\frac{dy}{dx} = \frac{(2 - x) \cdot 1 - x(-1)}{(2 - x)^{2}} = \frac{2}{(2 - x)^{2}}. \nonumber\]
A third way to find \(dy/dx\) is to solve the original equation for \(x\), find \(dx/dy\), and then use the Inverse Function Rule. \[\begin{align*} x + xy &= 2y \\ x &= \frac{2y}{1 + y} \\[4pt] \frac{dx}{dy} &= \frac{(1 + y) \cdot 2 - 2y \cdot 1}{(1 + y)^{2}} = \frac{2}{(1 + y)^{2}} \\[4pt] \frac{dy}{dx} &= \frac{1}{2} (1 + y)^{2} \end{align*}\]
To see that our three answers \[\frac{dy}{dx} = \frac{1 + y}{2 - x}, \quad \frac{dy}{dx} = \frac{2}{(2-x)^{2}}, \quad \frac{dy}{dx} = \frac{1}{2} (1+y)^{2} \nonumber\]are all the same we substitute \(\dfrac{x}{2-x}\) for \(y\): \[\begin{align*} \frac{dy}{dx} &= \frac{1+y}{2-x} = \frac{1 + \frac{x}{2-x}}{2-x} = \frac{2}{(2-x)^{2}}. \\[4pt] \frac{dy}{dx} &= \frac{1}{2} (1+y)^{2} = \frac{1}{2} \left(1 + \frac{x}{2-x}\right)^{2} = \frac{2}{(2 - x)^{2}} \end{align*}\]
In Example \(\PageIndex{1}\), we found \(dy/dx\) by three different methods.
(a) Implicit differentiation. We get \(dy/dx\) in terms of both \(x\) and \(y\).
(b) Solve for \(y\) as a function of \(x\) and differentiate directly. This gives \(dy/dx\) in terms of \(x\) only.
(c) Solve for \(x\) as a function of \(y\), find \(dx/dy\) directly, and use the Inverse Function Rule. This method gives \(dy/dx\) in terms of \(y\) only.
Given \(y + \sqrt{y} = x^{2}\), find \(dy/dx\).
Solution
\[\begin{align*} \frac{d(y + \sqrt{y})}{dx} &= \frac{d \left(x^{2}\right)}{dx} \\ \frac{dy}{dx} + \frac{1}{2} y^{-1/2} \frac{dy}{dx} &= 2x \\ \frac{dy}{dx} &= \frac{2x}{1 + \frac{1}{2} y^{-1/2}} \end{align*}\]
This answer can be used to find the slope at any point on the curve. For example, at the point \((\sqrt{2}, 1)\) the slope is \[\frac{2 \sqrt{2}}{1 + \frac{1}{2} \cdot 1^{-1/2}} = \frac{2 \sqrt{2}}{3/2} = \frac{4 \sqrt{2}}{3} \nonumber\]
while at the point \((-\sqrt{2}, 1)\) the slope is \[\frac{2 (-\sqrt{2})}{1 + \frac{1}{2} \cdot 1^{-1/2}} = \frac{-4 \sqrt{2}}{3}. \nonumber\]
To get \(dy/dx\) in terms of \(x\), we solve the original equation for \(y\) using the quadratic formula: \[\begin{align*} y + \sqrt{y} - x^{2} &= 0 \\ \sqrt{y} &= \frac{-1 \pm \sqrt{1 + 4x^{2}}}{2} \end{align*}\]
Since \(\sqrt{y} \geq 0\), only one solution may occur: \[\sqrt{y} = \frac{-1 + \sqrt{1 + 4x^{2}}}{2}. \nonumber\]
Then \[y = \left(\frac{-1 + \sqrt{1 + 4x^{2}}}{2}\right)^{2} \nonumber\]
The graph of this function is shown in Figure \(\PageIndex{1}\). By substitution we get \[\frac{dy}{dx} = \frac{2x}{1 + \frac{1}{2} y^{-1/2}} = \frac{2x}{1 + \left(-1 + \sqrt{1 + 4x^{2}}\right)^{-1}}. \nonumber\]
Often one side of an implicit function equation is constant and has derivative zero.
Given \(x^{2} - 2y^{2} = 4\), \(y \leq 0\), find \(dy/dx\).
Solution
\[\begin{align*} \frac{d \left(x^{2} - 2y^{2}\right)}{dx} &= \frac{d(4)}{dx} \\ \frac{d \left(x^{2} - 2y^{2}\right)}{dx} &= 2x - 4y \frac{dy}{dx} \\ \frac{d(4)}{dx} &= 0 \\ 2x - 4y \frac{dy}{dx} &= 0 \\ \frac{dy}{dx} &= \frac{-2x}{-4y} = \frac{x}{2y} \end{align*}\]
Solving the original equation for \(y\), we get \[\begin{align*} -2y^{2} &= 4 - x^{2}, \quad y \leq 0; \\ y^{2} &= \frac{x^{2} - 4}{2}, \quad y \leq 0; y &= - \sqrt{\frac{x^{2} - 4}{2}}. \end{align*}\]
Thus \(dy/dx\) in terms of \(x\) is \[\frac{dy}{dx} = \frac{x}{2y} = \frac{x}{-2 \sqrt{\frac{x^{2} - 4}{2}}} = - \frac{x}{2 \left(x^{2} - 4\right)}. \nonumber\]
The graph of this function is shown in Figure \(\PageIndex{2}\).
Implicit differentiation can even be applied to an equation that does not by itself determine \(y\) as a function \(x\). Sometimes extra inequalities must be assumed in order to make \(y\) a function of \(x\).
Given \[x^{2} + y^{2} = 1,\]find \(dy/dx\). This equation does not determine \(y\) as a function of \(x\); its graph is the unit circle. Nevertheless we differentiate both sides with respect to \(x\) and solve for \(dy/dx\), \[2x + 2y \frac{dy}{dx} = 0, \quad \frac{dy}{dx} = -\frac{x}{y}. \nonumber\]
We can conclude that for any system of formulas \(S\) which contains the Equation \((\PageIndex{2})\) and also determines \(y\) as a function of \(x\), it is true that \[\frac{dy}{dx} = -\frac{x}{y}.\]
We can use Equation \((\PageIndex{3})\) to find the slope of the line tangent to the unit circle at any point on the circle. The following examples are illustrated in Figure \(\PageIndex{3}\).
\[\begin{align*} &\frac{dy}{dx} = 0 \text{ at } (0, -1), \quad \frac{dy}{dx} = -\frac{1}{\sqrt{3}} \text{ at } \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \\ &\frac{dy}{dx} = \sqrt{8} \text{ at } \left(\frac{\sqrt{8}}{3}, -\frac{1}{3}\right), \quad \frac{dy}{dx} \text{ is undefined at } (-1, 0). \end{align*}\]
The system of formulas \[x^{2} + y^{2} = 1, \quad y \geq 0 \nonumber\]gives us\[y = \sqrt{1 - x^{2}}, \quad \frac{dy}{dx} = -\frac{x}{y} = -\frac{x}{\sqrt{1 - x^{2}}}. \nonumber\]
Find the slope of the line tangent to the curve \[x^{5} y^{3} + xy^{6} = y + 1.\]at the points \((1, 1)\), \((1, -1)\), and \((0, -1)\).
Solution
The three points are all on the curve, and the first two points have the same \(x\) coordinate, so Equation \((\PageIndex{4})\) does not by itself determine \(y\) as a function of \(x\).
We differentiate with respect to \(x\), \[\frac{d \left(x^{5}y^{3} + xy^{6}\right)}{dx} = \frac{d(y+1)}{dx}, \nonumber\]\[5x^{4} y^{3} + x^{5} \cdot 3y^{2} \ \frac{dy}{dx} + y^{6} + 6xy^{5} \ \frac{dy}{dx} = \frac{dy}{dx}, \nonumber\]
and then solve for \(dy/dx\), \[5x^{4} y^{3} + y^{6} + \left(3x^{5} y^{2} + 6xy^{5} - 1\right) \frac{dy}{dx} = 0, \nonumber\]\[\frac{dy}{dx} = -\frac{5x^{4} y^{3} + y^{6}}{3x^{5} y^{2} + 6xy^{5} - 1}.\]
Substituting, we get \[\begin{align*} \frac{dy}{dx} &= -\frac{6}{8} \text{ at } (1, 1). \\[4pt] \frac{dy}{dx} &= -1 \text{ at } (1, -1). \\[4pt] \frac{dy}{dx} &= +1 \text{ at } (0, -1). \end{align*}\]
Equation \((\PageIndex{5})\) for \(dy/dx\) is true of any system \(S\) of formulas which contains Equation \((\PageIndex{4})\) and determines \(y\) as a function of \(x\).
Here is what generally happens in the method of implicit differentiation. Given an equation \[\tau (x, y) = \sigma (x, y)\]between two terms which may involve the variables \(x\) and \(y\), we differentiate both sides of the equation and obtain \[\frac{d(\tau (x, y)}{dx} = \frac{d(\sigma (x, y)}{dx}.\]
We then solve Equation \((\PageIndex{7})\) to get \(dy/dx\) equal to a term which typically involves both \(x\) and \(y\). We can conclude that for any system of formulas which contains Equation \((\PageIndex{6})\) and determines \(y\) as a function of \(x\), Equation \((\PageIndex{7})\) is true. Also, Equation \((\PageIndex{7})\) can be used to find the slope of the tangent line at any point on the curve \(\tau(x, y) = \sigma(x, y)\).
Problems for Section 2.8
In Problems 1-26, find \(dy/dx\) by implicit differentiation. The answer may involve both \(x\) and \(y\).
1. | \(xy = 1\) | 2. | \(2x^{2} - 3y^{2} = 4, \quad y \leq 0\) |
3. | \(x^{3} + y^{3} = 2\) | 4. | \(x^{3} = y^{5}\) |
5. | \(y = 1/(x + y)\) | 6. | \(y^{2} + 3y - 5 = x\) |
7. | \(x^{-2} + y^{-2} = 1\) | 8. | \(xy^{3} = y + x\) |
9. | \(x^{2} + 3xy + y^{2} = 0\) | 10. | \(x/y + 3y = 2\) |
11. | \(x^{5} = y^{2} - y + 1\) | 12. | \(\sqrt{x} + \sqrt{y} = x + y\) |
13. | \(y = \sqrt{xy + 1}\) | 14. | \(x^{4} + y^{4} = 5\) |
15. | \(xy^{2} - 3x^{2}y + x = 1\) | 16. | \(2xy^{-2} + x^{-2} = y\) |
17. | \(y = \sin (xy)\) | 18. | \(y = \cos (x + y)\) |
19. | \(x = \cos^{2} y\) | 20. | \(x = \sin y + \cos y\) |
21. | \(y = e^{x + 2y}\) | 22. | \(e^{y} = x^{2} + y\) |
23. | \(e^{x} = \ln y\) | 24. | \(\ln y = \sin x\) |
25. | \(y^{2} = \ln (2x + 3y)\) | 26. | \(\ln (\cos y) = 2x + 5\) |
In Problems 27-33, find the slope of the line tangent to the given curve at the given point or points.
27. | \(x^{2} + xy + y^{2} = 7 \text{ at } (1,2) \text{ and } (-1, 3)\). |
28. | \(x + y^{3} = y \text{ at } (0,0), (0, 1), (0, -1), (-6, 2)\). |
29. | \(x^{2} - y^{2} = 3 \text{ at } (2,1), (2, -1), (\sqrt{3}, 0)\). |
30. | \(\tan x = y \text{ at } (\pi/4, 1)\) |
31. | \(2 \sin^{2} x = 3 \cos y \text{ at } (\pi/3, \pi/3)\) |
32. | \(y + e^{y} = 1 + \ln x\) \text{ at } (1, 0)\) |
33. | \(e^{\sin x} = \ln y \text{ at } (1, 0)\) |
34. | Given the equation \(x^{2} + y^{2} = 1\), find \(dy/dx\) and \(d^{2}y/dx^{2}\). |
35. | Given the equation \(2x^{2} - y^{2} = 1\), find \(dy/dx\) and \(d^{2}y/dx^{2}\). |
36. | Differentiating the equation \(x^{2} = y^{2}\) implicitly, we get \(dy/dx = x/y\). This is undefined at the point \((0, 0)\(. Sketch the graph of the equation to see what happens at the point \((0, 0)\). |