7.6: Trigonometric Substitutions
- Page ID
- 155875
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Integrals containing one of the terms
\[\sqrt{a^{2}+x^{2}}, \quad \sqrt{a^{2}-x^{2}}, \quad \text { or } \quad \sqrt{x^{2}-a^{2}} \nonumber \]
can often be integrated by a trigonometric substitution. The idea is to take \(x, a\), and the square root as the three sides of a right triangle and use one of its acute angles as a new variable \(\theta\). The three kinds of trigonometric substitutions are shown in Figure 7.6.1. These figures do not have to be memorized. Just remember that the sides must be labeled so that
\[(\text { opposite })^{2}+(\text { adjacent })^{2}=(\text { hypotenuse })^{2} \nonumber \]
These substitutions frequently give an integral of powers of trigonometric functions discussed in the preceding section.
\(x=a \tan \theta\)
\(x=a \sin \theta\)
\(x=a \sec \theta\)
Figure 7:6.1
Find \(\int\left(a^{2}+x^{2}\right)^{-3 / 2} d x\).
Solution
Let \(\theta=\arctan (x / a)\). Then from Figure 7.6.2,
\[x=a \tan \theta, \quad d x=a \sec ^{2} \theta d \theta, \quad \sqrt{a^{2}+x^{2}}=a \sec \theta \nonumber \]
So
\[\begin{aligned} \int\left(a^{2}+x^{2}\right)^{-3 / 2} d x & =\int(a \sec \theta)^{-3} a \sec ^{2} \theta d \theta \\ & =\frac{1}{a^{2}} \int(\sec \theta)^{-1} d \theta=\frac{1}{a^{2}} \int \cos \theta d \theta \\ & =\frac{1}{a^{2}} \sin \theta+C=\frac{1}{a^{2}} \frac{\tan \theta}{\sec \theta}+C=\frac{x}{a^{2} \sqrt{a^{2}+x^{2}}}+C \end{aligned} \nonumber \]
Find \(\int \sqrt{x^{2}-a^{2}} d x\).
Solution
Let \(\theta=\operatorname{arcsec}(x / a)\) (Figure 7.6.3), so
\[x=a \sec \theta, \quad d x=a \tan \theta \sec \theta d \theta, \quad \sqrt{x^{2}-a^{2}}=a \tan \theta \nonumber \]
So
\[\begin{aligned} \int \sqrt{x^{2}-a^{2}} d x & =\int a \tan \theta a \tan \theta \sec \theta d \theta=a^{2} \int \tan ^{2} \theta \sec \theta d \theta \\ & =a^{2} \int\left(\sec ^{2} \theta-1\right) \sec \theta d \theta \\ & =a^{2} \int \sec ^{3} \theta d \theta-a^{2} \int \sec \theta d \theta \\ & =\left(\frac{1}{2} a^{2} \sec ^{2} \theta \sin \theta+\frac{1}{2} a^{2} \int \sec \theta d \theta\right)-a^{2} \int \sec \theta d \theta \\ & =\frac{1}{2} a^{2} \sec ^{2} \theta \sin \theta-\frac{1}{2} a^{2} \int \sec \theta d \theta \\ & =\frac{1}{2} x \sqrt{x^{2}-a^{2}}-\frac{1}{2} a^{2} \int \sec \theta d \theta \end{aligned} \nonumber \]
This is as far as we can go on this problem until we find out how to integrate \(\int \sec \theta d \theta\) in the next chapter.
\(\int \frac{1}{x^{2} \sqrt{a^{2}-x^{2}}} d x\). Let \(\theta=\arcsin (x / a)\) (Figure 7.6.4). Then
Solution
\[\begin{aligned} & x=a \sin \theta, \quad d x=a \cos \theta d \theta, \quad \sqrt{a^{2}-x^{2}}=a \cos \theta \\ & \int \frac{1}{x^{2} \sqrt{a^{2}-x^{2}}} d x=\int \frac{1}{a^{2} \sin ^{2} \theta a \cos \theta} a \cos \theta d \theta=\int \frac{1}{a^{2} \sin ^{2} \theta} d \theta \\ &=\frac{1}{a^{2}} \int \csc ^{2} \theta d \theta=-\frac{1}{a^{2}} \cot \theta+C \\ &=-\frac{1}{a^{2}} \frac{\sqrt{a^{2}-x^{2}}}{x}+C \end{aligned} \nonumber \]
\(\int \frac{\sqrt{x^{2}}-a^{2}}{x} d x\). Put \(\theta=\operatorname{arcsec}(x / a)\) (Figure 7.6.5). Then
Solution
\[\begin{aligned} & x=a \sec \theta, \quad d x=a \tan \theta \sec \theta d \theta, \quad \sqrt{x^{2}-a^{2}}=a \tan \theta \\ & \begin{aligned} \int \frac{\sqrt{x^{2}-a^{2}}}{x} d x & =\int \frac{a \tan \theta}{a \sec \theta} a \tan \theta \sec \theta d \theta=a \int \tan ^{2} \theta d \theta \\ \cdot & =a \int \sec ^{2} \theta d \theta-a \int d \theta=a \tan \theta-a \theta+C \\ & =\sqrt{x^{2}-a^{2}}-a \operatorname{arcsec}(x / a)+C \end{aligned} \end{aligned} \nonumber \]
Figure 7.6 .4
To keep track of a trigonometric substitution, it is a good idea to actually draw the triangle and label the sides.
The basic integrals:
Solution
(a)
\[\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C \nonumber \]
(b)
\[\int \frac{d x}{1+x^{2}} d x=\arctan x+C \nonumber \]
(c)
\[\int \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec} x+C, \quad x>1 \nonumber \]
can be evaluated very easily by a trigonometric substitution.
(a)
\[\int \frac{1}{\sqrt{1-x^{2}}} d x \nonumber \]
Let \(\theta=\arcsin x\) (Figure 7.6.6). Then \(x=\sin \theta, d x=\cos \theta d \theta, \sqrt{1-x^{2}}=\) \(\cos \theta\).
\[\begin{aligned} & \int \frac{1}{\sqrt{1-x^{2}}} d x=\int \frac{\cos \theta d \theta}{\cos \theta}=\int d \theta=\theta+C \\ & \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C \end{aligned} \nonumber \]
(b)
\[\int \frac{d x}{1+x^{2}} \nonumber \]
Let \(\theta=\arctan x\) (Figure 7.6.7). Then \(x=\tan \theta, d x=\sec ^{2} \theta d \theta, \sqrt{1+x^{2}}=\) \(\sec \theta\).
\[\begin{aligned} & \int \frac{d x}{1+x^{2}}=\int \frac{\sec ^{2} \theta}{\sec ^{2} \theta} d \theta=\int d \theta=\theta+C \\ & \int \frac{d x}{1+x^{2}}=\arctan x+C \end{aligned} \nonumber \]
(c)
\[\int \frac{d x}{x \sqrt{x^{2}-1}}, \quad x>1 \nonumber \]
Let \(\theta=\operatorname{arcsec} x\) (Figure 7.6.8). Then \(x=\sec \theta, d x=\tan \theta \sec \theta d \theta\), \(\sqrt{x^{2}-1}=\tan \theta\).
\[\begin{aligned} & \int \frac{d x}{x \sqrt{x^{2}-1}}=\int \frac{\tan \theta \sec \theta}{\sec \theta \tan \theta} d \theta=\int d \theta=\theta+C \\ & \int \frac{d x}{x \sqrt{x^{2}+1}}=\operatorname{arcsec} x+C, \quad x>1 \end{aligned} \nonumber \]
It is therefore more important to remember the method of trigonometric substitution than to remember the integration formulas (a), (b), (c).
PROBLEMS FOR SECTION 7.6
Draw the appropriate triangle and evaluate using trigonometric substitutions
\(1 \quad \int \frac{d x}{\sqrt{1}-4 x^{2}}\)
\(2 \quad \int \sqrt{a^{2}-x^{2}} d x\)
\(3 \quad \int \frac{x^{3} d x}{\sqrt{9+\overline{x^{2}}}}\)
\(4 \int \frac{\sqrt{x^{2}-1}}{x} d x\)
\(5 \int\left(4-x^{2}\right)^{-3 / 2} d x\)
\(6 \quad \int\left(1-3 x^{2}\right)^{3 / 2} d x\)
\(7 \int \frac{\sin \theta d \theta}{\sqrt{2-\cos ^{2} \theta}}\)
\(8 \quad \int \frac{d x}{\sqrt{x} \sqrt{1-x}}\)
\(9 \quad \int \frac{d x}{x^{2}\left(1+x^{2}\right)}\)
\(10 \int \frac{x^{4} d x}{9+x^{2}}\)
\(11 \int \frac{x^{2} d x}{\sqrt{4-x^{2}}}\)
\(12 \int \frac{\sqrt{9-4 x^{2}}}{x^{4}} d x\)
\(13 \int x^{2} \sqrt{1-x^{2}} d x\)
14 \(\int \sqrt{x} \sqrt{1-x} d x\)
15
\(\int \sqrt{4 x-x^{2}} d x\)
\(16 \int \frac{\sqrt{x}}{\sqrt{1-x}} d x\)
\(17 \int \frac{x^{3}}{\sqrt{4 x^{2}-1}} d x\)
\(18 \int-\frac{d x}{x^{3} \sqrt{x^{2}-3}}\)
\(19 \int \frac{x^{3}}{\sqrt{a^{2}-x^{2}}} d x\)
\(20 \int x^{3} \sqrt{1+a^{2} x^{2}} d x\)
\(21 \int \frac{\sqrt{x^{4}-1}}{x} d x\)
\(22 \int x \sqrt{1-x^{4}} d x\)
23 \(\int \frac{x^{3}}{\left(a^{2}+x^{2}\right)^{3 / 2}} d x\)
24
\[\int_{0}^{2} \sqrt{4-x^{2}} d x \nonumber \]
25 \(\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x\)
\[\int_{0}^{4} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}} \tag{26} \]
\(27 \quad \int_{0}^{\infty} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}\)
\[\int_{2}^{4} \frac{\sqrt{x^{2}-2}}{x} d x \tag{28} \]
\(29 \int_{2}^{x} \frac{\sqrt{x^{2}-2}}{x} d x\)
\(30 \quad \int_{0}^{x} \frac{x^{3}}{\sqrt{1+x^{2}}} d x\)
\(31 \int x \arcsin x d x\)
\(32 \int x \arccos x d x\)
\(33 \int x^{2} \arcsin x d x\)
\(34 \int x^{3} \arctan x d x\)
35 \(\int x^{-3} \arcsin x d x\)
\(36 \int x^{-3} \arctan x d x\)
37 Find the surface area generated by rotating the ellipse \(x^{2}+4 y^{2}=1\) about the \(x\)-axis.


