Skip to main content
Mathematics LibreTexts

7.6: Trigonometric Substitutions

  • Page ID
    155875
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Integrals containing one of the terms

    \[\sqrt{a^{2}+x^{2}}, \quad \sqrt{a^{2}-x^{2}}, \quad \text { or } \quad \sqrt{x^{2}-a^{2}} \nonumber \]

    can often be integrated by a trigonometric substitution. The idea is to take \(x, a\), and the square root as the three sides of a right triangle and use one of its acute angles as a new variable \(\theta\). The three kinds of trigonometric substitutions are shown in Figure 7.6.1. These figures do not have to be memorized. Just remember that the sides must be labeled so that

    \[(\text { opposite })^{2}+(\text { adjacent })^{2}=(\text { hypotenuse })^{2} \nonumber \]

    These substitutions frequently give an integral of powers of trigonometric functions discussed in the preceding section.

    image

    \(x=a \tan \theta\)

    image

    \(x=a \sin \theta\)

    image

    \(x=a \sec \theta\)

    Figure 7:6.1

    Example 1

    Find \(\int\left(a^{2}+x^{2}\right)^{-3 / 2} d x\).

    Solution

    Let \(\theta=\arctan (x / a)\). Then from Figure 7.6.2,

    \[x=a \tan \theta, \quad d x=a \sec ^{2} \theta d \theta, \quad \sqrt{a^{2}+x^{2}}=a \sec \theta \nonumber \]

    So

    \[\begin{aligned} \int\left(a^{2}+x^{2}\right)^{-3 / 2} d x & =\int(a \sec \theta)^{-3} a \sec ^{2} \theta d \theta \\ & =\frac{1}{a^{2}} \int(\sec \theta)^{-1} d \theta=\frac{1}{a^{2}} \int \cos \theta d \theta \\ & =\frac{1}{a^{2}} \sin \theta+C=\frac{1}{a^{2}} \frac{\tan \theta}{\sec \theta}+C=\frac{x}{a^{2} \sqrt{a^{2}+x^{2}}}+C \end{aligned} \nonumber \]

    Example 2

    Find \(\int \sqrt{x^{2}-a^{2}} d x\).

    Solution

    Let \(\theta=\operatorname{arcsec}(x / a)\) (Figure 7.6.3), so

    \[x=a \sec \theta, \quad d x=a \tan \theta \sec \theta d \theta, \quad \sqrt{x^{2}-a^{2}}=a \tan \theta \nonumber \]

    So

    \[\begin{aligned} \int \sqrt{x^{2}-a^{2}} d x & =\int a \tan \theta a \tan \theta \sec \theta d \theta=a^{2} \int \tan ^{2} \theta \sec \theta d \theta \\ & =a^{2} \int\left(\sec ^{2} \theta-1\right) \sec \theta d \theta \\ & =a^{2} \int \sec ^{3} \theta d \theta-a^{2} \int \sec \theta d \theta \\ & =\left(\frac{1}{2} a^{2} \sec ^{2} \theta \sin \theta+\frac{1}{2} a^{2} \int \sec \theta d \theta\right)-a^{2} \int \sec \theta d \theta \\ & =\frac{1}{2} a^{2} \sec ^{2} \theta \sin \theta-\frac{1}{2} a^{2} \int \sec \theta d \theta \\ & =\frac{1}{2} x \sqrt{x^{2}-a^{2}}-\frac{1}{2} a^{2} \int \sec \theta d \theta \end{aligned} \nonumber \]

    This is as far as we can go on this problem until we find out how to integrate \(\int \sec \theta d \theta\) in the next chapter.

     

    image
    Figure 7.6.3

     

    image

    Example 3

    \(\int \frac{1}{x^{2} \sqrt{a^{2}-x^{2}}} d x\). Let \(\theta=\arcsin (x / a)\) (Figure 7.6.4). Then

    Solution

    \[\begin{aligned} & x=a \sin \theta, \quad d x=a \cos \theta d \theta, \quad \sqrt{a^{2}-x^{2}}=a \cos \theta \\ & \int \frac{1}{x^{2} \sqrt{a^{2}-x^{2}}} d x=\int \frac{1}{a^{2} \sin ^{2} \theta a \cos \theta} a \cos \theta d \theta=\int \frac{1}{a^{2} \sin ^{2} \theta} d \theta \\ &=\frac{1}{a^{2}} \int \csc ^{2} \theta d \theta=-\frac{1}{a^{2}} \cot \theta+C \\ &=-\frac{1}{a^{2}} \frac{\sqrt{a^{2}-x^{2}}}{x}+C \end{aligned} \nonumber \]

    Example 4

    \(\int \frac{\sqrt{x^{2}}-a^{2}}{x} d x\). Put \(\theta=\operatorname{arcsec}(x / a)\) (Figure 7.6.5). Then

    Solution

    \[\begin{aligned} & x=a \sec \theta, \quad d x=a \tan \theta \sec \theta d \theta, \quad \sqrt{x^{2}-a^{2}}=a \tan \theta \\ & \begin{aligned} \int \frac{\sqrt{x^{2}-a^{2}}}{x} d x & =\int \frac{a \tan \theta}{a \sec \theta} a \tan \theta \sec \theta d \theta=a \int \tan ^{2} \theta d \theta \\ \cdot & =a \int \sec ^{2} \theta d \theta-a \int d \theta=a \tan \theta-a \theta+C \\ & =\sqrt{x^{2}-a^{2}}-a \operatorname{arcsec}(x / a)+C \end{aligned} \end{aligned} \nonumber \]

    Figure 7.6 .4

    image

     

    image
    Figure 7.6.5

     

    To keep track of a trigonometric substitution, it is a good idea to actually draw the triangle and label the sides.

    Example 5

    The basic integrals:

    Solution

    (a) 

    \[\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C \nonumber \]

    (b)

    \[\int \frac{d x}{1+x^{2}} d x=\arctan x+C \nonumber \]

    (c)

    \[\int \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec} x+C, \quad x>1 \nonumber \]

    can be evaluated very easily by a trigonometric substitution.

    (a)

    \[\int \frac{1}{\sqrt{1-x^{2}}} d x \nonumber \]

     

     

    image
    Figure 7.6.6

     

     

    image
    Figure 7.6.7

     

     

    image
    Figure 7.6.8

     

    Let \(\theta=\arcsin x\) (Figure 7.6.6). Then \(x=\sin \theta, d x=\cos \theta d \theta, \sqrt{1-x^{2}}=\) \(\cos \theta\).

    \[\begin{aligned} & \int \frac{1}{\sqrt{1-x^{2}}} d x=\int \frac{\cos \theta d \theta}{\cos \theta}=\int d \theta=\theta+C \\ & \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C \end{aligned} \nonumber \]

    (b)

    \[\int \frac{d x}{1+x^{2}} \nonumber \]

    Let \(\theta=\arctan x\) (Figure 7.6.7). Then \(x=\tan \theta, d x=\sec ^{2} \theta d \theta, \sqrt{1+x^{2}}=\) \(\sec \theta\).

    \[\begin{aligned} & \int \frac{d x}{1+x^{2}}=\int \frac{\sec ^{2} \theta}{\sec ^{2} \theta} d \theta=\int d \theta=\theta+C \\ & \int \frac{d x}{1+x^{2}}=\arctan x+C \end{aligned} \nonumber \]

    (c)

    \[\int \frac{d x}{x \sqrt{x^{2}-1}}, \quad x>1 \nonumber \]

    Let \(\theta=\operatorname{arcsec} x\) (Figure 7.6.8). Then \(x=\sec \theta, d x=\tan \theta \sec \theta d \theta\), \(\sqrt{x^{2}-1}=\tan \theta\).

    \[\begin{aligned} & \int \frac{d x}{x \sqrt{x^{2}-1}}=\int \frac{\tan \theta \sec \theta}{\sec \theta \tan \theta} d \theta=\int d \theta=\theta+C \\ & \int \frac{d x}{x \sqrt{x^{2}+1}}=\operatorname{arcsec} x+C, \quad x>1 \end{aligned} \nonumber \]

    It is therefore more important to remember the method of trigonometric substitution than to remember the integration formulas (a), (b), (c).

    PROBLEMS FOR SECTION 7.6

    Draw the appropriate triangle and evaluate using trigonometric substitutions

    \(1 \quad \int \frac{d x}{\sqrt{1}-4 x^{2}}\)
    \(2 \quad \int \sqrt{a^{2}-x^{2}} d x\)
    \(3 \quad \int \frac{x^{3} d x}{\sqrt{9+\overline{x^{2}}}}\)
    \(4 \int \frac{\sqrt{x^{2}-1}}{x} d x\)
    \(5 \int\left(4-x^{2}\right)^{-3 / 2} d x\)
    \(6 \quad \int\left(1-3 x^{2}\right)^{3 / 2} d x\)
    \(7 \int \frac{\sin \theta d \theta}{\sqrt{2-\cos ^{2} \theta}}\)
    \(8 \quad \int \frac{d x}{\sqrt{x} \sqrt{1-x}}\)
    \(9 \quad \int \frac{d x}{x^{2}\left(1+x^{2}\right)}\)
    \(10 \int \frac{x^{4} d x}{9+x^{2}}\)
    \(11 \int \frac{x^{2} d x}{\sqrt{4-x^{2}}}\)
    \(12 \int \frac{\sqrt{9-4 x^{2}}}{x^{4}} d x\)
    \(13 \int x^{2} \sqrt{1-x^{2}} d x\)
    14 \(\int \sqrt{x} \sqrt{1-x} d x\)
    15
    \(\int \sqrt{4 x-x^{2}} d x\)
    \(16 \int \frac{\sqrt{x}}{\sqrt{1-x}} d x\)
    \(17 \int \frac{x^{3}}{\sqrt{4 x^{2}-1}} d x\)
    \(18 \int-\frac{d x}{x^{3} \sqrt{x^{2}-3}}\)
    \(19 \int \frac{x^{3}}{\sqrt{a^{2}-x^{2}}} d x\)
    \(20 \int x^{3} \sqrt{1+a^{2} x^{2}} d x\)
    \(21 \int \frac{\sqrt{x^{4}-1}}{x} d x\)
    \(22 \int x \sqrt{1-x^{4}} d x\)
    23 \(\int \frac{x^{3}}{\left(a^{2}+x^{2}\right)^{3 / 2}} d x\)
    24

    \[\int_{0}^{2} \sqrt{4-x^{2}} d x \nonumber \]

    25 \(\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x\)

    \[\int_{0}^{4} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}} \tag{26} \]

    \(27 \quad \int_{0}^{\infty} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}\)

    \[\int_{2}^{4} \frac{\sqrt{x^{2}-2}}{x} d x \tag{28} \]

    \(29 \int_{2}^{x} \frac{\sqrt{x^{2}-2}}{x} d x\)
    \(30 \quad \int_{0}^{x} \frac{x^{3}}{\sqrt{1+x^{2}}} d x\)
    \(31 \int x \arcsin x d x\)
    \(32 \int x \arccos x d x\)
    \(33 \int x^{2} \arcsin x d x\)
    \(34 \int x^{3} \arctan x d x\)
    35 \(\int x^{-3} \arcsin x d x\)
    \(36 \int x^{-3} \arctan x d x\)

    37 Find the surface area generated by rotating the ellipse \(x^{2}+4 y^{2}=1\) about the \(x\)-axis.


    This page titled 7.6: Trigonometric Substitutions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by H. Jerome Keisler.

    • Was this article helpful?