Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.6: Trigonometric Substitutions

( \newcommand{\kernel}{\mathrm{null}\,}\)

Integrals containing one of the terms

a2+x2,a2x2, or x2a2

can often be integrated by a trigonometric substitution. The idea is to take x,a, and the square root as the three sides of a right triangle and use one of its acute angles as a new variable θ. The three kinds of trigonometric substitutions are shown in Figure 7.6.1. These figures do not have to be memorized. Just remember that the sides must be labeled so that

( opposite )2+( adjacent )2=( hypotenuse )2

These substitutions frequently give an integral of powers of trigonometric functions discussed in the preceding section.

image

x=atanθ

image

x=asinθ

image

x=asecθ

Figure 7:6.1

Example 1

Find (a2+x2)3/2dx.

Solution

Let θ=arctan(x/a). Then from Figure 7.6.2,

x=atanθ,dx=asec2θdθ,a2+x2=asecθ

So

(a2+x2)3/2dx=(asecθ)3asec2θdθ=1a2(secθ)1dθ=1a2cosθdθ=1a2sinθ+C=1a2tanθsecθ+C=xa2a2+x2+C

Example 2

Find x2a2dx.

Solution

Let θ=arcsec(x/a) (Figure 7.6.3), so

x=asecθ,dx=atanθsecθdθ,x2a2=atanθ

So

x2a2dx=atanθatanθsecθdθ=a2tan2θsecθdθ=a2(sec2θ1)secθdθ=a2sec3θdθa2secθdθ=(12a2sec2θsinθ+12a2secθdθ)a2secθdθ=12a2sec2θsinθ12a2secθdθ=12xx2a212a2secθdθ

This is as far as we can go on this problem until we find out how to integrate secθdθ in the next chapter.

 

image
Figure 7.6.3

 

image

Example 3

1x2a2x2dx. Let θ=arcsin(x/a) (Figure 7.6.4). Then

Solution

x=asinθ,dx=acosθdθ,a2x2=acosθ1x2a2x2dx=1a2sin2θacosθacosθdθ=1a2sin2θdθ=1a2csc2θdθ=1a2cotθ+C=1a2a2x2x+C

Example 4

x2a2xdx. Put θ=arcsec(x/a) (Figure 7.6.5). Then

Solution

x=asecθ,dx=atanθsecθdθ,x2a2=atanθx2a2xdx=atanθasecθatanθsecθdθ=atan2θdθ=asec2θdθadθ=atanθaθ+C=x2a2aarcsec(x/a)+C

Figure 7.6 .4

image

 

image
Figure 7.6.5

 

To keep track of a trigonometric substitution, it is a good idea to actually draw the triangle and label the sides.

Example 5

The basic integrals:

Solution

(a) 

11x2dx=arcsinx+C

(b)

dx1+x2dx=arctanx+C

(c)

dxxx21=arcsecx+C,x>1

can be evaluated very easily by a trigonometric substitution.

(a)

11x2dx

 

 

image
Figure 7.6.6

 

 

image
Figure 7.6.7

 

 

image
Figure 7.6.8

 

Let θ=arcsinx (Figure 7.6.6). Then x=sinθ,dx=cosθdθ,1x2= cosθ.

11x2dx=cosθdθcosθ=dθ=θ+C11x2dx=arcsinx+C

(b)

dx1+x2

Let θ=arctanx (Figure 7.6.7). Then x=tanθ,dx=sec2θdθ,1+x2= secθ.

dx1+x2=sec2θsec2θdθ=dθ=θ+Cdx1+x2=arctanx+C

(c)

dxxx21,x>1

Let θ=arcsecx (Figure 7.6.8). Then x=secθ,dx=tanθsecθdθ, x21=tanθ.

dxxx21=tanθsecθsecθtanθdθ=dθ=θ+Cdxxx2+1=arcsecx+C,x>1

It is therefore more important to remember the method of trigonometric substitution than to remember the integration formulas (a), (b), (c).

PROBLEMS FOR SECTION 7.6

Draw the appropriate triangle and evaluate using trigonometric substitutions

1dx14x2
2a2x2dx
3x3dx9+¯x2
4x21xdx
5(4x2)3/2dx
6(13x2)3/2dx
7sinθdθ2cos2θ
8dxx1x
9dxx2(1+x2)
10x4dx9+x2
11x2dx4x2
1294x2x4dx
13x21x2dx
14 x1xdx
15
4xx2dx
16x1xdx
17x34x21dx
18dxx3x23
19x3a2x2dx
20x31+a2x2dx
21x41xdx
22x1x4dx
23 x3(a2+x2)3/2dx
24

204x2dx

25 11x21x2dx

40dx(9+x2)3/2

270dx(9+x2)3/2

42x22xdx

29x2x22xdx
30x0x31+x2dx
31xarcsinxdx
32xarccosxdx
33x2arcsinxdx
34x3arctanxdx
35 x3arcsinxdx
36x3arctanxdx

37 Find the surface area generated by rotating the ellipse x2+4y2=1 about the x-axis.


This page titled 7.6: Trigonometric Substitutions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by H. Jerome Keisler.

Support Center

How can we help?