Skip to main content
Mathematics LibreTexts

7.13: Exercises

  • Page ID
    180083
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    [x40]Let \(C\) be an \(n\times r\) matrix with coefficients in a field \(F\). Show that

    \[\{M\in M_{n}(F)\mid MC=0\} \nonumber \]

    is a left ideal in \(M_{n}(F)\), and that every left ideal is of this form for some \(C\).

    [x41]This exercise shows how to recover a finite group \(G\) from its category of representations over a field \(k\). Let \(S\) be a finite set, and let \(A\) be the set of maps \(S\rightarrow k\).

    1. Show that \(A\) becomes a commutative ring with the product

      \[(f_{1}f_{2})(g)=f_{1}(g)f_{2}(g),\quad f_{1}\text{, }f_{2}\in A,\quad g\in S. \nonumber \]

      Moreover, when we identify \(c\in k\) with the constant function, \(A\) becomes a \(k\)-algebra.

    2. Show that

      \[A\simeq\prod\nolimits_{s\in S}k_{s}\quad\quad\text{(product of copies of }k\text{ indexed by the elements of }S\text{)}, \nonumber \]

      and that the \(k_{s}\) are exactly the minimal \(k\)-subalgebras of \(A\). Deduce that \(\End_{k\text{-alg}}(A)\simeq\Sym(S)\).

    3. Let \((f_{1},f_{2})\in A\times A\) act on \(S\times S\) by \((f_{1}% ,f_{2})(s_{1},s_{2})=f_{1}(s_{1})f_{2}(s_{2})\); show that this defines a bijection \(A\otimes A\simeq\Map(S\times S,k)\). Now take \(S=G\).

    4. Show that the map \(r_{A}\colon G\rightarrow\End_{k\text{-linear}}(A)\),

      \[(r_{A}(g)f)(g^{\prime})=f(gg^{\prime}),\quad f\in A,\quad g,g^{\prime}\in G \nonumber \]

      is a representation of \(G\) (this is the regular representation).

    5. Define \(\Delta\colon A\rightarrow A\otimes A\) by \(\Delta(f)(g_{1}% ,g_{2})=f(g_{1}g_{2})\). Show that, for any homomorphism \(\alpha\colon A\rightarrow A\) of \(k\)-algebras such \((1\otimes\alpha)\circ\Delta=\Delta \circ\alpha\), there exists a unique element \(g\in G\) such that \(\alpha(f)=gf\) for all \(f\in A\). [Hint: Deduce from (b) that there exists a bijection \(\phi\colon G\rightarrow G\) such that \(\left( \alpha f\right) (g)=f(\phi g)\) for all \(g\in G\). From the hypothesis on \(\alpha\), deduce that \(\phi (g_{1}g_{2})=g_{1}\cdot\phi(g_{2})\) for all \(g_{1},g_{2}\in G(R)\). Hence \(\phi(g)=g\cdot\phi(e)\) for all \(g\in G\). Deduce that \(\alpha(f)=\phi(e)f\) for all \(f\in A\).]

    6. Show that the following maps are \(G\)-equivariant

      \[\begin{aligned} e\colon & k\rightarrow A\quad\quad\text{(trivial representation on }k\text{; }r_{A}\text{ on }A)\\ m\colon & A\otimes A\rightarrow A\quad\quad\text{(}r_{A}\otimes r_{A}\text{ on }A\otimes A\text{; }r_{A}\text{ on }A)\\ \Delta\colon & A\rightarrow A\otimes A\quad\quad\text{(}r_{A}\text{ on }A\text{; }1\otimes r_{A}\text{ on }A\otimes A).\end{aligned} \nonumber \]

    7. Suppose that we are given, for each finite-dimensional representation \((V,r_{V})\), a \(k\)-linear map \(\lambda_{V}\). If the family \((\lambda_{V})\) satisfies the conditions

      1. for all representations \(V\), \(W\), \(\lambda_{V\otimes W}=\lambda _{V}\otimes\lambda_{W};\)

      2. for \(k\) with its trivial representation, \(\lambda_{k}=\id_{k}\);

      3. for all \(G\)-equivariant maps \(\alpha\colon V\rightarrow W\), \(\lambda _{W}\circ\alpha=\alpha\circ\lambda_{V};\)

      then there exists a unique \(g\in G(R)\) such that \(\lambda_{V}% =r_{V}(g)\) for all \(V\). [Hint: show that \(\lambda_{A}\) satisfies the conditions of (d).]

    For a historical account of the representation theory of finite groups, emphasizing the work of “the four principal contributors to the theory in its formative stages: Ferdinand Georg Frobenius, William Burnside, Issai Schur, and Richard Brauer”, see .


    This page titled 7.13: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James S. Milne.

    • Was this article helpful?