Skip to main content
Mathematics LibreTexts

1.8.1: Review Exercises

  • Page ID
    117333
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Use the Language of Algebra

    Identify Multiples and Factors

    385.

    Use the divisibility tests to determine whether 180 is divisible by 2, by 3, by 5, by 6, and by 10.

    386.

    Find the prime factorization of 252.

    387.

    Find the least common multiple of 24 and 40.

    In the following exercises, simplify each expression.

    388.

    24 ÷ 3 + 4 ( 5 2 ) 24 ÷ 3 + 4 ( 5 2 )

    389.

    7 + 3 [ 6 4 ( 5 4 ) ] 3 2 7 + 3 [ 6 4 ( 5 4 ) ] 3 2

    Evaluate an Expression

    In the following exercises, evaluate the following expressions.

    390.

    When x=4,x=4, x3x3 5x5x 2x25x+32x25x+3

    391.

    2x24xy3y22x24xy3y2 when x=3,x=3, y=1y=1

    Simplify Expressions by Combining Like Terms

    In the following exercises, simplify the following expressions by combining like terms.

    392.

    12 y + 7 + 2 y 5 12 y + 7 + 2 y 5

    393.

    14 x 2 9 x + 11 8 x 2 + 8 x 6 14 x 2 9 x + 11 8 x 2 + 8 x 6

    Translate an English Phrase to an Algebraic Expression

    In the following exercises, translate the phrases into algebraic expressions.

    394.


    the sum of 4ab24ab2 and 7a3b27a3b2
    the product of 6y26y2 and 3y3y
    twelve more than 5x5x
    5y5y less than 8y28y2

    395.


    eleven times the difference of yy and two
    the difference of eleven times yy and two

    396.

    Dushko has nickels and pennies in his pocket. The number of pennies is four less than five times the number of nickels. Let nn represent the number of nickels. Write an expression for the number of pennies.

    Integers

    Simplify Expressions with Absolute Value

    In the following exercise, fill in <,>,<,>, or == for each of the following pairs of numbers.

    397.


    |7|___|−7||7|___|−7|
    −8___|−8|−8___|−8|
    |−13|___13|−13|___13
    |−12|___(−12)|−12|___(−12)

    In the following exercises, simplify.

    398.

    9 | 3 ( 4 8 ) | 9 | 3 ( 4 8 ) |

    399.

    12 3 | 1 4 ( 4 2 ) | 12 3 | 1 4 ( 4 2 ) |

    Add and Subtract Integers

    In the following exercises, simplify each expression.

    400.

    −12 + ( −8 ) + 7 −12 + ( −8 ) + 7

    401.


    157157
    −15(−7)−15(−7)
    −157−157
    15(−7)15(−7)

    402.

    −11 ( −12 ) + 5 −11 ( −12 ) + 5

    403.

    23(−17)23(−17) 23+1723+17

    404.

    ( 7 11 ) ( 3 5 ) ( 7 11 ) ( 3 5 )

    Multiply and Divide Integers

    In the following exercise, multiply or divide.

    405.

    −27÷9−27÷9 120÷(−8)120÷(−8) 4(−14)4(−14) −1(−17)−1(−17)

    Simplify and Evaluate Expressions with Integers

    In the following exercises, simplify each expression.

    406.

    (−7)3(−7)3 7373

    407.

    ( 7 11 ) ( 6 13 ) ( 7 11 ) ( 6 13 )

    408.

    63 ÷ ( −9 ) + ( −36 ) ÷ ( −4 ) 63 ÷ ( −9 ) + ( −36 ) ÷ ( −4 )

    409.

    6 3 | 4 ( 1 2 ) ( 7 5 ) | 6 3 | 4 ( 1 2 ) ( 7 5 ) |

    410.

    ( −2 ) 4 24 ÷ ( 13 5 ) ( −2 ) 4 24 ÷ ( 13 5 )

    For the following exercises, evaluate each expression.

    411.

    (y+z)2(y+z)2 when
    y=−4,z=7y=−4,z=7

    412.

    3x22xy+4y23x22xy+4y2 when
    x=−2,y=−3x=−2,y=−3

    Translate English Phrases to Algebraic Expressions

    In the following exercises, translate to an algebraic expression and simplify if possible.

    413.

    the sum of −4−4 and −9,−9, increased by 23

    414.

    the difference of 17 and −8−8 subtract 17 from −25−25

    Use Integers in Applications

    In the following exercise, solve.

    415.

    Temperature On July 10, the high temperature in Phoenix, Arizona, was 109°, and the high temperature in Juneau, Alaska, was 63°. What was the difference between the temperature in Phoenix and the temperature in Juneau?

    Fractions

    Simplify Fractions

    In the following exercises, simplify.

    416.

    204 228 204 228

    417.

    270 x 3 198 y 2 270 x 3 198 y 2

    Multiply and Divide Fractions

    In the following exercises, perform the indicated operation.

    418.

    ( 14 15 ) ( 10 21 ) ( 14 15 ) ( 10 21 )

    419.

    6 x 25 ÷ 9 y 20 6 x 25 ÷ 9 y 20

    420.

    4 9 8 21 4 9 8 21

    Add and Subtract Fractions

    In the following exercises, perform the indicated operation.

    421.

    5 18 + 7 12 5 18 + 7 12

    422.

    11 36 15 48 11 36 15 48

    423.

    58+3458+34 58÷3458÷34

    424.

    3y10563y1056 3y10·563y10·56

    Use the Order of Operations to Simplify Fractions

    In the following exercises, simplify.

    425.

    4 · 3 2 · 5 −6 · 3 + 2 · 3 4 · 3 2 · 5 −6 · 3 + 2 · 3

    426.

    4 ( 7 3 ) 2 ( 4 9 ) −3 ( 4 + 2 ) + 7 ( 3 6 ) 4 ( 7 3 ) 2 ( 4 9 ) −3 ( 4 + 2 ) + 7 ( 3 6 )

    427.

    4 3 4 2 ( 4 5 ) 2 4 3 4 2 ( 4 5 ) 2

    Evaluate Variable Expressions with Fractions

    In the following exercises, evaluate.

    428.

    4x2y24x2y2 when
    x=23x=23 and y=34y=34

    429.

    a+baba+bab when
    a=−4,a=−4, b=6b=6

    Decimals

    Round Decimals

    430.

    Round 6.7386.738 to the nearest hundredth tenth whole number.

    Add and Subtract Decimals

    In the following exercises, perform the indicated operation.

    431.

    −23.67 + 29.84 −23.67 + 29.84

    432.

    54.3 100 54.3 100

    433.

    79.38 ( −17.598 ) 79.38 ( −17.598 )

    Multiply and Divide Decimals

    In the following exercises, perform the indicated operation.

    434.

    ( −2.8 ) ( 3.97 ) ( −2.8 ) ( 3.97 )

    435.

    ( −8.43 ) ( −57.91 ) ( −8.43 ) ( −57.91 )

    436.

    ( 53.48 ) ( 10 ) ( 53.48 ) ( 10 )

    437.

    ( 0.563 ) ( 100 ) ( 0.563 ) ( 100 )

    438.

    $ 118.35 ÷ 2.6 $ 118.35 ÷ 2.6

    439.

    1.84 ÷ ( −0.8 ) 1.84 ÷ ( −0.8 )

    Convert Decimals, Fractions and Percents

    In the following exercises, convert each decimal to a fraction.

    440.

    0.65 0.65

    441.

    −9.6 −9.6

    In the following exercises, convert each fraction to a decimal.

    442.

    5 8 5 8

    443.

    14 11 14 11

    In the following exercises, convert each decimal to a percent.

    444.

    2.43 2.43

    445.

    0.0475 0.0475

    Simplify Expressions with Square Roots

    In the following exercises, simplify.

    446.

    289 289

    447.

    −121 −121

    Identify Integers, Rational Numbers, Irrational Numbers, and Real Numbers

    In the following exercise, list the whole numbers integers rational numbers irrational numbers real numbers for each set of numbers

    448.

    −8 , 0 , 1.95286... , 12 5 , 36 , 9 −8 , 0 , 1.95286... , 12 5 , 36 , 9

    Locate Fractions and Decimals on the Number Line

    In the following exercises, locate the numbers on a number line.

    449.

    3 4 , 3 4 , 1 1 3 , −1 2 3 , 7 2 , 5 2 3 4 , 3 4 , 1 1 3 , −1 2 3 , 7 2 , 5 2

    450.

    3.23.2 −1.35−1.35

    Properties of Real Numbers

    Use the Commutative and Associative Properties

    In the following exercises, simplify.

    451.

    5 8 x + 5 12 y + 1 8 x + 7 12 y 5 8 x + 5 12 y + 1 8 x + 7 12 y

    452.

    −32 · 9 · 5 8 −32 · 9 · 5 8

    453.

    ( 11 15 + 3 8 ) + 5 8 ( 11 15 + 3 8 ) + 5 8

    Use the Properties of Identity, Inverse and Zero

    In the following exercises, simplify.

    454.

    4 7 + 8 15 + ( 4 7 ) 4 7 + 8 15 + ( 4 7 )

    455.

    13 15 · 9 17 · 15 13 13 15 · 9 17 · 15 13

    456.

    0 x 3 , x 3 0 x 3 , x 3

    457.

    5 x 7 0 , 5 x 7 0 5 x 7 0 , 5 x 7 0

    Simplify Expressions Using the Distributive Property

    In the following exercises, simplify using the Distributive Property.

    458.

    8 ( a 4 ) 8 ( a 4 )

    459.

    12 ( 2 3 b + 5 6 ) 12 ( 2 3 b + 5 6 )

    460.

    18 · 5 6 ( 2 x 5 ) 18 · 5 6 ( 2 x 5 )

    461.

    ( x 5 ) p ( x 5 ) p

    462.

    −4 ( y 3 ) −4 ( y 3 )

    463.

    12 6 ( x + 3 ) 12 6 ( x + 3 )

    464.

    6 ( 3 x 4 ) ( −5 ) 6 ( 3 x 4 ) ( −5 )

    465.

    5 ( 2 y + 3 ) ( 4 y 1 ) 5 ( 2 y + 3 ) ( 4 y 1 )


    1.8.1: Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?