Skip to main content
Mathematics LibreTexts

5.7.1: Review Exercises

  • Page ID
    117503
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Add and Subtract Polynomials

    Types of Polynomials

    In the following exercises, determine the type of polynomial.

    342.

    16 x 2 40 x 25 16 x 2 40 x 25

    343.

    5 m + 9 5 m + 9

    344.

    −15 −15

    345.

    y 2 + 6 y 3 + 9 y 4 y 2 + 6 y 3 + 9 y 4

    Add and Subtract Polynomials

    In the following exercises, add or subtract the polynomials.

    346.

    4 p + 11 p 4 p + 11 p

    347.

    −8 y 3 5 y 3 −8 y 3 5 y 3

    348.

    ( 4 a 2 + 9 a 11 ) + ( 6 a 2 5 a + 10 ) ( 4 a 2 + 9 a 11 ) + ( 6 a 2 5 a + 10 )

    349.

    ( 8 m 2 + 12 m 5 ) ( 2 m 2 7 m 1 ) ( 8 m 2 + 12 m 5 ) ( 2 m 2 7 m 1 )

    350.

    ( y 2 3 y + 12 ) + ( 5 y 2 9 ) ( y 2 3 y + 12 ) + ( 5 y 2 9 )

    351.

    ( 5 u 2 + 8 u ) ( 4 u 7 ) ( 5 u 2 + 8 u ) ( 4 u 7 )

    352.

    Find the sum of 8q3278q327 and q2+6q2.q2+6q2.

    353.

    Find the difference of x2+6x+8x2+6x+8 and x28x+15.x28x+15.

    In the following exercises, simplify.

    354.

    17 m n 2 ( −9 m n 2 ) + 3 m n 2 17 m n 2 ( −9 m n 2 ) + 3 m n 2

    355.

    18 a 7 b 21 a 18 a 7 b 21 a

    356.

    2 p q 2 5 p 3 q 2 2 p q 2 5 p 3 q 2

    357.

    ( 6 a 2 + 7 ) + ( 2 a 2 5 a 9 ) ( 6 a 2 + 7 ) + ( 2 a 2 5 a 9 )

    358.

    ( 3 p 2 4 p 9 ) + ( 5 p 2 + 14 ) ( 3 p 2 4 p 9 ) + ( 5 p 2 + 14 )

    359.

    ( 7 m 2 2 m 5 ) ( 4 m 2 + m 8 ) ( 7 m 2 2 m 5 ) ( 4 m 2 + m 8 )

    360.

    ( 7 b 2 4 b + 3 ) ( 8 b 2 5 b 7 ) ( 7 b 2 4 b + 3 ) ( 8 b 2 5 b 7 )

    361.

    Subtract (8y2y+9)(8y2y+9) from (11y29y5)(11y29y5)

    362.

    Find the difference of (z24z12)(z24z12) and (3z2+2z11)(3z2+2z11)

    363.

    ( x 3 x 2 y ) ( 4 x y 2 y 3 ) + ( 3 x 2 y x y 2 ) ( x 3 x 2 y ) ( 4 x y 2 y 3 ) + ( 3 x 2 y x y 2 )

    364.

    ( x 3 2 x 2 y ) ( x y 2 3 y 3 ) ( x 2 y 4 x y 2 ) ( x 3 2 x 2 y ) ( x y 2 3 y 3 ) ( x 2 y 4 x y 2 )

    Evaluate a Polynomial Function for a Given Value of the Variable

    In the following exercises, find the function values for each polynomial function.

    365.

    For the function f(x)=7x23x+5f(x)=7x23x+5 find:
    f(5)f(5) f(−2)f(−2) f(0)f(0)

    366.

    For the function g(x)=1516x2,g(x)=1516x2, find:
    g(−1)g(−1) g(0)g(0) g(2)g(2)

    367.

    A pair of glasses is dropped off a bridge 640 feet above a river. The polynomial function h(t)=−16t2+640h(t)=−16t2+640 gives the height of the glasses t seconds after they were dropped. Find the height of the glasses when t=6.t=6.

    368.

    A manufacturer of the latest soccer shoes has found that the revenue received from selling the shoes at a cost of pp dollars each is given by the polynomial R(p)=−5p2+360p.R(p)=−5p2+360p. Find the revenue received when p=10p=10 dollars.

    Add and Subtract Polynomial Functions

    In the following exercises, find (f + g)(x)  (f + g)(3)  (fg)(x)  (fg)(−2)

    369.

    f(x)=2x24x7f(x)=2x24x7 and g(x)=2x2x+5g(x)=2x2x+5

    370.

    f(x)=4x33x2+x1f(x)=4x33x2+x1 and g(x)=8x31g(x)=8x31

    Properties of Exponents and Scientific Notation

    Simplify Expressions Using the Properties for Exponents

    In the following exercises, simplify each expression using the properties for exponents.

    371.

    p 3 · p 10 p 3 · p 10

    372.

    2 · 2 6 2 · 2 6

    373.

    a · a 2 · a 3 a · a 2 · a 3

    374.

    x · x 8 x · x 8

    375.

    y a · y b y a · y b

    376.

    2 8 2 2 2 8 2 2

    377.

    a 6 a a 6 a

    378.

    n 3 n 12 n 3 n 12

    379.

    1 x 5 1 x 5

    380.

    3 0 3 0

    381.

    y 0 y 0

    382.

    ( 14 t ) 0 ( 14 t ) 0

    383.

    12 a 0 15 b 0 12 a 0 15 b 0

    Use the Definition of a Negative Exponent

    In the following exercises, simplify each expression.

    384.

    6 −2 6 −2

    385.

    ( −10 ) −3 ( −10 ) −3

    386.

    5 · 2 −4 5 · 2 −4

    387.

    ( 8 n ) −1 ( 8 n ) −1

    388.

    y −5 y −5

    389.

    10 −3 10 −3

    390.

    1 a −4 1 a −4

    391.

    1 6 −2 1 6 −2

    392.

    5 −3 5 −3

    393.

    ( 1 5 ) −3 ( 1 5 ) −3

    394.

    ( 1 2 ) −3 ( 1 2 ) −3

    395.

    ( −5 ) −3 ( −5 ) −3

    396.

    ( 5 9 ) −2 ( 5 9 ) −2

    397.

    ( 3 x ) −3 ( 3 x ) −3

    In the following exercises, simplify each expression using the Product Property.

    398.

    ( y 4 ) 3 ( y 4 ) 3

    399.

    ( 3 2 ) 5 ( 3 2 ) 5

    400.

    ( a 10 ) y ( a 10 ) y

    401.

    x −3 · x 9 x −3 · x 9

    402.

    r −5 · r −4 r −5 · r −4

    403.

    ( u v −3 ) ( u −4 v −2 ) ( u v −3 ) ( u −4 v −2 )

    404.

    ( m 5 ) −1 ( m 5 ) −1

    405.

    p 5 · p −2 · p −4 p 5 · p −2 · p −4

    In the following exercises, simplify each expression using the Power Property.

    406.

    ( k −2 ) −3 ( k −2 ) −3

    407.

    q 4 q 20 q 4 q 20

    408.

    b 8 b −2 b 8 b −2

    409.

    n −3 n −5 n −3 n −5

    In the following exercises, simplify each expression using the Product to a Power Property.

    410.

    ( −5 a b ) 3 ( −5 a b ) 3

    411.

    ( −4 p q ) 0 ( −4 p q ) 0

    412.

    ( −6 x 3 ) −2 ( −6 x 3 ) −2

    413.

    ( 3 y −4 ) 2 ( 3 y −4 ) 2

    In the following exercises, simplify each expression using the Quotient to a Power Property.

    414.

    ( 3 5 x ) −2 ( 3 5 x ) −2

    415.

    ( 3 x y 2 z ) 4 ( 3 x y 2 z ) 4

    416.

    ( 4 p −3 q 2 ) 2 ( 4 p −3 q 2 ) 2

    In the following exercises, simplify each expression by applying several properties.

    417.

    ( x 2 y ) 2 ( 3 x y 5 ) 3 ( x 2 y ) 2 ( 3 x y 5 ) 3

    418.

    ( −3 a −2 ) 4 ( 2 a 4 ) 2 ( −6 a 2 ) 3 ( −3 a −2 ) 4 ( 2 a 4 ) 2 ( −6 a 2 ) 3

    419.

    ( 3 x y 3 4 x 4 y −2 ) 2 ( 6 x y 4 8 x 3 y −2 ) −1 ( 3 x y 3 4 x 4 y −2 ) 2 ( 6 x y 4 8 x 3 y −2 ) −1

    In the following exercises, write each number in scientific notation.

    420.

    2.568 2.568

    421.

    5,300,000

    422.

    0.00814 0.00814

    In the following exercises, convert each number to decimal form.

    423.

    2.9 × 10 4 2.9 × 10 4

    424.

    3.75 × 10 −1 3.75 × 10 −1

    425.

    9.413 × 10 −5 9.413 × 10 −5

    In the following exercises, multiply or divide as indicated. Write your answer in decimal form.

    426.

    ( 3 × 10 7 ) ( 2 × 10 −4 ) ( 3 × 10 7 ) ( 2 × 10 −4 )

    427.

    ( 1.5 × 10 −3 ) ( 4.8 × 10 −1 ) ( 1.5 × 10 −3 ) ( 4.8 × 10 −1 )

    428.

    6 × 10 9 2 × 10 −1 6 × 10 9 2 × 10 −1

    429.

    9 × 10 −3 1 × 10 −6 9 × 10 −3 1 × 10 −6

    Multiply Polynomials

    Multiply Monomials

    In the following exercises, multiply the monomials.

    430.

    ( −6 p 4 ) ( 9 p ) ( −6 p 4 ) ( 9 p )

    431.

    ( 1 3 c 2 ) ( 30 c 8 ) ( 1 3 c 2 ) ( 30 c 8 )

    432.

    ( 8 x 2 y 5 ) ( 7 x y 6 ) ( 8 x 2 y 5 ) ( 7 x y 6 )

    433.

    ( 2 3 m 3 n 6 ) ( 1 6 m 4 n 4 ) ( 2 3 m 3 n 6 ) ( 1 6 m 4 n 4 )

    Multiply a Polynomial by a Monomial

    In the following exercises, multiply.

    434.

    7 ( 10 x ) 7 ( 10 x )

    435.

    a 2 ( a 2 9 a 36 ) a 2 ( a 2 9 a 36 )

    436.

    −5 y ( 125 y 3 1 ) −5 y ( 125 y 3 1 )

    437.

    ( 4 n 5 ) ( 2 n 3 ) ( 4 n 5 ) ( 2 n 3 )

    Multiply a Binomial by a Binomial

    In the following exercises, multiply the binomials using:

    the Distributive Property the FOIL method the Vertical Method.

    438.

    ( a + 5 ) ( a + 2 ) ( a + 5 ) ( a + 2 )

    439.

    ( y 4 ) ( y + 12 ) ( y 4 ) ( y + 12 )

    440.

    ( 3 x + 1 ) ( 2 x 7 ) ( 3 x + 1 ) ( 2 x 7 )

    441.

    ( 6 p 11 ) ( 3 p 10 ) ( 6 p 11 ) ( 3 p 10 )

    In the following exercises, multiply the binomials. Use any method.

    442.

    ( n + 8 ) ( n + 1 ) ( n + 8 ) ( n + 1 )

    443.

    ( k + 6 ) ( k 9 ) ( k + 6 ) ( k 9 )

    444.

    ( 5 u 3 ) ( u + 8 ) ( 5 u 3 ) ( u + 8 )

    445.

    ( 2 y 9 ) ( 5 y 7 ) ( 2 y 9 ) ( 5 y 7 )

    446.

    ( p + 4 ) ( p + 7 ) ( p + 4 ) ( p + 7 )

    447.

    ( x 8 ) ( x + 9 ) ( x 8 ) ( x + 9 )

    448.

    ( 3 c + 1 ) ( 9 c 4 ) ( 3 c + 1 ) ( 9 c 4 )

    449.

    ( 10 a 1 ) ( 3 a 3 ) ( 10 a 1 ) ( 3 a 3 )

    Multiply a Polynomial by a Polynomial

    In the following exercises, multiply using the Distributive Property the Vertical Method.

    450.

    ( x + 1 ) ( x 2 3 x 21 ) ( x + 1 ) ( x 2 3 x 21 )

    451.

    ( 5 b 2 ) ( 3 b 2 + b 9 ) ( 5 b 2 ) ( 3 b 2 + b 9 )

    In the following exercises, multiply. Use either method.

    452.

    ( m + 6 ) ( m 2 7 m 30 ) ( m + 6 ) ( m 2 7 m 30 )

    453.

    ( 4 y 1 ) ( 6 y 2 12 y + 5 ) ( 4 y 1 ) ( 6 y 2 12 y + 5 )

    Multiply Special Products

    In the following exercises, square each binomial using the Binomial Squares Pattern.

    454.

    ( 2 x y ) 2 ( 2 x y ) 2

    455.

    ( x + 3 4 ) 2 ( x + 3 4 ) 2

    456.

    ( 8 p 3 3 ) 2 ( 8 p 3 3 ) 2

    457.

    ( 5 p + 7 q ) 2 ( 5 p + 7 q ) 2

    In the following exercises, multiply each pair of conjugates using the Product of Conjugates.

    458.

    ( 3 y + 5 ) ( 3 y 5 ) ( 3 y + 5 ) ( 3 y 5 )

    459.

    ( 6 x + y ) ( 6 x y ) ( 6 x + y ) ( 6 x y )

    460.

    ( a + 2 3 b ) ( a 2 3 b ) ( a + 2 3 b ) ( a 2 3 b )

    461.

    ( 12 x 3 7 y 2 ) ( 12 x 3 + 7 y 2 ) ( 12 x 3 7 y 2 ) ( 12 x 3 + 7 y 2 )

    462.

    ( 13 a 2 8 b 4 ) ( 13 a 2 + 8 b 4 ) ( 13 a 2 8 b 4 ) ( 13 a 2 + 8 b 4 )

    Divide Monomials

    Divide Monomials

    In the following exercises, divide the monomials.

    463.

    72 p 12 ÷ 8 p 3 72 p 12 ÷ 8 p 3

    464.

    −26 a 8 ÷ ( 2 a 2 ) −26 a 8 ÷ ( 2 a 2 )

    465.

    45 y 6 −15 y 10 45 y 6 −15 y 10

    466.

    −30 x 8 −36 x 9 −30 x 8 −36 x 9

    467.

    28 a 9 b 7 a 4 b 3 28 a 9 b 7 a 4 b 3

    468.

    11 u 6 v 3 55 u 2 v 8 11 u 6 v 3 55 u 2 v 8

    469.

    ( 5 m 9 n 3 ) ( 8 m 3 n 2 ) ( 10 m n 4 ) ( m 2 n 5 ) ( 5 m 9 n 3 ) ( 8 m 3 n 2 ) ( 10 m n 4 ) ( m 2 n 5 )

    470.

    ( 42 r 2 s 4 ) ( 54 r s 2 ) ( 6 r s 3 ) ( 9 s ) ( 42 r 2 s 4 ) ( 54 r s 2 ) ( 6 r s 3 ) ( 9 s )

    Divide a Polynomial by a Monomial

    In the following exercises, divide each polynomial by the monomial

    471.

    ( 54 y 4 24 y 3 ) ÷ ( −6 y 2 ) ( 54 y 4 24 y 3 ) ÷ ( −6 y 2 )

    472.

    63 x 3 y 2 99 x 2 y 3 45 x 4 y 3 9 x 2 y 2 63 x 3 y 2 99 x 2 y 3 45 x 4 y 3 9 x 2 y 2

    473.

    12 x 2 + 4 x 3 −4 x 12 x 2 + 4 x 3 −4 x

    Divide Polynomials using Long Division

    In the following exercises, divide each polynomial by the binomial.

    474.

    ( 4 x 2 21 x 18 ) ÷ ( x 6 ) ( 4 x 2 21 x 18 ) ÷ ( x 6 )

    475.

    ( y 2 + 2 y + 18 ) ÷ ( y + 5 ) ( y 2 + 2 y + 18 ) ÷ ( y + 5 )

    476.

    ( n 3 2 n 2 6 n + 27 ) ÷ ( n + 3 ) ( n 3 2 n 2 6 n + 27 ) ÷ ( n + 3 )

    477.

    ( a 3 1 ) ÷ ( a + 1 ) ( a 3 1 ) ÷ ( a + 1 )

    Divide Polynomials using Synthetic Division

    In the following exercises, use synthetic Division to find the quotient and remainder.

    478.

    x33x24x+12x33x24x+12 is divided by x+2x+2

    479.

    2x311x2+11x+122x311x2+11x+12 is divided by x3x3

    480.

    x4+x2+6x10x4+x2+6x10 is divided by x+2x+2

    Divide Polynomial Functions

    In the following exercises, divide.

    481.

    For functions f(x)=x215x+54f(x)=x215x+54 and g(x)=x9,g(x)=x9, find (fg)(x)(fg)(x)
    (fg)(−2)(fg)(−2)

    482.

    For functions f(x)=x3+x27x+2f(x)=x3+x27x+2 and g(x)=x2,g(x)=x2, find (fg)(x)(fg)(x)
    (fg)(3)(fg)(3)

    Use the Remainder and Factor Theorem

    In the following exercises, use the Remainder Theorem to find the remainder.

    483.

    f(x)=x34x9f(x)=x34x9 is divided by x+2x+2

    484.

    f(x)=2x36x24f(x)=2x36x24 divided by x3x3

    In the following exercises, use the Factor Theorem to determine if xcxc is a factor of the polynomial function.

    485.

    Determine whether x2x2 is a factor of x37x2+7x6x37x2+7x6.

    486.

    Determine whether x3x3 is a factor of x37x2+11x+3x37x2+11x+3.


    5.7.1: Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?