Skip to main content
Mathematics LibreTexts

6.8.1: Review Exercises

  • Page ID
    117510
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Greatest Common Factor and Factor by Grouping

    Find the Greatest Common Factor of Two or More Expressions

    In the following exercises, find the greatest common factor.

    337.

    12 a 2 b 3 , 15 a b 2 12 a 2 b 3 , 15 a b 2

    338.

    12 m 2 n 3 , 42 m 5 n 3 12 m 2 n 3 , 42 m 5 n 3

    339.

    15 y 3 , 21 y 2 , 30 y 15 y 3 , 21 y 2 , 30 y

    340.

    45 x 3 y 2 , 15 x 4 y , 10 x 5 y 3 45 x 3 y 2 , 15 x 4 y , 10 x 5 y 3

    Factor the Greatest Common Factor from a Polynomial

    In the following exercises, factor the greatest common factor from each polynomial.

    341.

    35 y + 84 35 y + 84

    342.

    6 y 2 + 12 y 6 6 y 2 + 12 y 6

    343.

    18 x 3 15 x 18 x 3 15 x

    344.

    15 m 4 + 6 m 2 n 15 m 4 + 6 m 2 n

    345.

    4 x 3 12 x 2 + 16 x 4 x 3 12 x 2 + 16 x

    346.

    −3 x + 24 −3 x + 24

    347.

    −3 x 3 + 27 x 2 12 x −3 x 3 + 27 x 2 12 x

    348.

    3 x ( x 1 ) + 5 ( x 1 ) 3 x ( x 1 ) + 5 ( x 1 )

    Factor by Grouping

    In the following exercises, factor by grouping.

    349.

    a x a y + b x b y a x a y + b x b y

    350.

    x 2 y x y 2 + 2 x 2 y x 2 y x y 2 + 2 x 2 y

    351.

    x 2 + 7 x 3 x 21 x 2 + 7 x 3 x 21

    352.

    4 x 2 16 x + 3 x 12 4 x 2 16 x + 3 x 12

    353.

    m 3 + m 2 + m + 1 m 3 + m 2 + m + 1

    354.

    5 x 5 y y + x 5 x 5 y y + x

    Factor Trinomials

    Factor Trinomials of the Form x2+bx+cx2+bx+c

    In the following exercises, factor each trinomial of the form x2+bx+c.x2+bx+c.

    355.

    a 2 + 14 a + 33 a 2 + 14 a + 33

    356.

    k 2 16 k + 60 k 2 16 k + 60

    357.

    m 2 + 3 m 54 m 2 + 3 m 54

    358.

    x 2 3 x 10 x 2 3 x 10

    In the following examples, factor each trinomial of the form x2+bxy+cy2.x2+bxy+cy2.

    359.

    x 2 + 12 x y + 35 y 2 x 2 + 12 x y + 35 y 2

    360.

    r 2 + 3 r s 28 s 2 r 2 + 3 r s 28 s 2

    361.

    a 2 + 4 a b 21 b 2 a 2 + 4 a b 21 b 2

    362.

    p 2 5 p q 36 q 2 p 2 5 p q 36 q 2

    363.

    m 2 5 m n + 30 n 2 m 2 5 m n + 30 n 2

    Factor Trinomials of the Form ax2+bx+cax2+bx+c Using Trial and Error

    In the following exercises, factor completely using trial and error.

    364.

    x 3 + 5 x 2 24 x x 3 + 5 x 2 24 x

    365.

    3 y 3 21 y 2 + 30 y 3 y 3 21 y 2 + 30 y

    366.

    5 x 4 + 10 x 3 75 x 2 5 x 4 + 10 x 3 75 x 2

    367.

    5 y 2 + 14 y + 9 5 y 2 + 14 y + 9

    368.

    8 x 2 + 25 x + 3 8 x 2 + 25 x + 3

    369.

    10 y 2 53 y 11 10 y 2 53 y 11

    370.

    6 p 2 19 p q + 10 q 2 6 p 2 19 p q + 10 q 2

    371.

    −81 a 2 + 153 a + 18 −81 a 2 + 153 a + 18

    Factor Trinomials of the Form ax2+bx+cax2+bx+c using the ‘ac’ Method

    In the following exercises, factor.

    372.

    2 x 2 + 9 x + 4 2 x 2 + 9 x + 4

    373.

    18 a 2 9 a + 1 18 a 2 9 a + 1

    374.

    15 p 2 + 2 p 8 15 p 2 + 2 p 8

    375.

    15 x 2 + 6 x 2 15 x 2 + 6 x 2

    376.

    8 a 2 + 32 a + 24 8 a 2 + 32 a + 24

    377.

    3 x 2 + 3 x 36 3 x 2 + 3 x 36

    378.

    48 y 2 + 12 y 36 48 y 2 + 12 y 36

    379.

    18 a 2 57 a 21 18 a 2 57 a 21

    380.

    3 n 4 12 n 3 96 n 2 3 n 4 12 n 3 96 n 2

    Factor using substitution

    In the following exercises, factor using substitution.

    381.

    x 4 13 x 2 30 x 4 13 x 2 30

    382.

    ( x 3 ) 2 5 ( x 3 ) 36 ( x 3 ) 2 5 ( x 3 ) 36

    Factor Special Products

    Factor Perfect Square Trinomials

    In the following exercises, factor completely using the perfect square trinomials pattern.

    383.

    25 x 2 + 30 x + 9 25 x 2 + 30 x + 9

    384.

    36 a 2 84 a b + 49 b 2 36 a 2 84 a b + 49 b 2

    385.

    40 x 2 + 360 x + 810 40 x 2 + 360 x + 810

    386.

    5 k 3 70 k 2 + 245 k 5 k 3 70 k 2 + 245 k

    387.

    75 u 4 30 u 3 v + 3 u 2 v 2 75 u 4 30 u 3 v + 3 u 2 v 2

    Factor Differences of Squares

    In the following exercises, factor completely using the difference of squares pattern, if possible.

    388.

    81 r 2 25 81 r 2 25

    389.

    169 m 2 n 2 169 m 2 n 2

    390.

    25 p 2 1 25 p 2 1

    391.

    9 121 y 2 9 121 y 2

    392.

    20 x 2 125 20 x 2 125

    393.

    169 n 3 n 169 n 3 n

    394.

    6 p 2 q 2 54 p 2 6 p 2 q 2 54 p 2

    395.

    24 p 2 + 54 24 p 2 + 54

    396.

    49 x 2 81 y 2 49 x 2 81 y 2

    397.

    16 z 4 1 16 z 4 1

    398.

    48 m 4 n 2 243 n 2 48 m 4 n 2 243 n 2

    399.

    a 2 + 6 a + 9 9 b 2 a 2 + 6 a + 9 9 b 2

    400.

    x 2 16 x + 64 y 2 x 2 16 x + 64 y 2

    Factor Sums and Differences of Cubes

    In the following exercises, factor completely using the sums and differences of cubes pattern, if possible.

    401.

    a 3 125 a 3 125

    402.

    b 3 216 b 3 216

    403.

    2 m 3 + 54 2 m 3 + 54

    404.

    81 m 3 + 3 81 m 3 + 3

    General Strategy for Factoring Polynomials

    Recognize and Use the Appropriate Method to Factor a Polynomial Completely

    In the following exercises, factor completely.

    405.

    24 x 3 + 44 x 2 24 x 3 + 44 x 2

    406.

    24 a 4 9 a 3 24 a 4 9 a 3

    407.

    16 n 2 56 m n + 49 m 2 16 n 2 56 m n + 49 m 2

    408.

    6 a 2 25 a 9 6 a 2 25 a 9

    409.

    5 u 4 45 u 2 5 u 4 45 u 2

    410.

    n 4 81 n 4 81

    411.

    64 j 2 + 225 64 j 2 + 225

    412.

    5 x 2 + 5 x 60 5 x 2 + 5 x 60

    413.

    b 3 64 b 3 64

    414.

    m 3 + 125 m 3 + 125

    415.

    2 b 2 2 b c + 5 c b 5 c 2 2 b 2 2 b c + 5 c b 5 c 2

    416.

    48 x 5 y 2 243 x y 2 48 x 5 y 2 243 x y 2

    417.

    5 q 2 15 q 90 5 q 2 15 q 90

    418.

    4 u 5 v + 4 u 2 v 3 4 u 5 v + 4 u 2 v 3

    419.

    10 m 4 6250 10 m 4 6250

    420.

    60 x 2 y 75 x y + 30 y 60 x 2 y 75 x y + 30 y

    421.

    16 x 2 24 x y + 9 y 2 64 16 x 2 24 x y + 9 y 2 64

    Polynomial Equations

    Use the Zero Product Property

    In the following exercises, solve.

    422.

    ( a 3 ) ( a + 7 ) = 0 ( a 3 ) ( a + 7 ) = 0

    423.

    ( 5 b + 1 ) ( 6 b + 1 ) = 0 ( 5 b + 1 ) ( 6 b + 1 ) = 0

    424.

    6 m ( 12 m 5 ) = 0 6 m ( 12 m 5 ) = 0

    425.

    ( 2 x 1 ) 2 = 0 ( 2 x 1 ) 2 = 0

    426.

    3 m ( 2 m 5 ) ( m + 6 ) = 0 3 m ( 2 m 5 ) ( m + 6 ) = 0

    Solve Quadratic Equations by Factoring

    In the following exercises, solve.

    427.

    x 2 + 9 x + 20 = 0 x 2 + 9 x + 20 = 0

    428.

    y 2 y 72 = 0 y 2 y 72 = 0

    429.

    2 p 2 11 p = 40 2 p 2 11 p = 40

    430.

    q 3 + 3 q 2 + 2 q = 0 q 3 + 3 q 2 + 2 q = 0

    431.

    144 m 2 25 = 0 144 m 2 25 = 0

    432.

    4 n 2 = 36 4 n 2 = 36

    433.

    ( x + 6 ) ( x 3 ) = −8 ( x + 6 ) ( x 3 ) = −8

    434.

    ( 3 x 2 ) ( x + 4 ) = 12 x ( 3 x 2 ) ( x + 4 ) = 12 x

    435.

    16 p 3 = 24 p 2 9 p 16 p 3 = 24 p 2 9 p

    436.

    2 y 3 + 2 y 2 = 12 y 2 y 3 + 2 y 2 = 12 y

    Solve Equations with Polynomial Functions

    In the following exercises, solve.

    437.

    For the function, f(x)=x2+11x+20,f(x)=x2+11x+20, find when f(x)=−8f(x)=−8 Use this information to find two points that lie on the graph of the function.

    438.

    For the function, f(x)=9x218x+5,f(x)=9x218x+5, find when f(x)=−3f(x)=−3 Use this information to find two points that lie on the graph of the function.

    In each function, find: the zeros of the function the x-intercepts of the graph of the function the y-intercept of the graph of the function.

    439.

    f ( x ) = 64 x 2 49 f ( x ) = 64 x 2 49

    440.

    f ( x ) = 6 x 2 13 x 5 f ( x ) = 6 x 2 13 x 5

    Solve Applications Modeled by Quadratic Equations

    In the following exercises, solve.

    441.

    The product of two consecutive odd numbers is 399. Find the numbers.

    442.

    The area of a rectangular shaped patio 432 square feet. The length of the patio is 6 feet more than its width. Find the length and width.

    443.

    A ladder leans against the wall of a building. The length of the ladder is 9 feet longer than the distance of the bottom of the ladder from the building. The distance of the top of the ladder reaches up the side of the building is 7 feet longer than the distance of the bottom of the ladder from the building. Find the lengths of all three sides of the triangle formed by the ladder leaning against the building.

    444.

    Shruti is going to throw a ball from the top of a cliff. When she throws the ball from 80 feet above the ground, the function h(t)=−16t2+64t+80h(t)=−16t2+64t+80 models the height, h, of the ball above the ground as a function of time, t. Find: the zeros of this function which tells us when the ball will hit the ground. the time(s) the ball will be 80 feet above the ground. the height the ball will be at t=2t=2 seconds which is when the ball will be at its highest point.


    6.8.1: Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?