Skip to main content
Mathematics LibreTexts

13.1.6: Chapter 6

  • Page ID
    117741
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Be Prepared

    6.1

    2 · 2 · 2 · 7 2 · 2 · 2 · 7

    6.2

    72

    6.3

    −21 a 2 24 a b −21 a 2 24 a b

    6.4

    1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

    6.5

    6 y 2 + 23 y + 20 6 y 2 + 23 y + 20

    6.6

    −54, 54

    6.7

    27 x 6 27 x 6

    6.8

    m 2 + 8 m + 16 m 2 + 8 m + 16

    6.9

    x 2 9 x 2 9

    6.10

    y = 3 5 y = 3 5

    6.11

    n ( n 11 ) ( n + 2 ) n ( n 11 ) ( n + 2 )

    6.12

    8 ; x = 2 8 ; x = 2

    Try It

    6.1

    5 m 2 5 m 2

    6.2

    7 x 7 x

    6.3

    3 y 2 ( 3 x + 2 x 2 + 7 y ) 3 y 2 ( 3 x + 2 x 2 + 7 y )

    6.4

    3 p ( p 2 2 p q + 3 q 2 ) 3 p ( p 2 2 p q + 3 q 2 )

    6.5

    2 x 2 ( x + 6 ) 2 x 2 ( x + 6 )

    6.6

    3 y 2 ( 2 y 5 ) 3 y 2 ( 2 y 5 )

    6.7

    3 x y ( 5 x 2 x y + 2 y 2 ) 3 x y ( 5 x 2 x y + 2 y 2 )

    6.8

    2 a b ( 4 a 2 + a b 3 b 2 ) 2 a b ( 4 a 2 + a b 3 b 2 )

    6.9

    −4 b ( b 2 4 b + 2 ) −4 b ( b 2 4 b + 2 )

    6.10

    −7 a ( a 2 3 a + 2 ) −7 a ( a 2 3 a + 2 )

    6.11

    ( m + 3 ) ( 4 m 7 ) ( m + 3 ) ( 4 m 7 )

    6.12

    ( n 4 ) ( 8 n + 5 ) ( n 4 ) ( 8 n + 5 )

    6.13

    ( x + 8 ) ( y + 3 ) ( x + 8 ) ( y + 3 )

    6.14

    ( a + 7 ) ( b + 8 ) ( a + 7 ) ( b + 8 )

    6.15

    (x5)(x+2)(x5)(x+2)
    (5x4)(4x3)(5x4)(4x3)

    6.16

    (y+4)(y7)(y+4)(y7)
    (7m3)(6m5)(7m3)(6m5)

    6.17

    ( q + 4 ) ( q + 6 ) ( q + 4 ) ( q + 6 )

    6.18

    ( t + 2 ) ( t + 12 ) ( t + 2 ) ( t + 12 )

    6.19

    ( u 3 ) ( u 6 ) ( u 3 ) ( u 6 )

    6.20

    ( y 7 ) ( y 9 ) ( y 7 ) ( y 9 )

    6.21

    ( m + 3 ) ( m + 6 ) ( m + 3 ) ( m + 6 )

    6.22

    ( n 3 ) ( n 4 ) ( n 3 ) ( n 4 )

    6.23

    ( a b ) ( a 10 b ) ( a b ) ( a 10 b )

    6.24

    ( m n ) ( m 12 n ) ( m n ) ( m 12 n )

    6.25

    prime

    6.26

    prime

    6.27

    5 x ( x 1 ) ( x + 4 ) 5 x ( x 1 ) ( x + 4 )

    6.28

    6 y ( y 2 ) ( y + 5 ) 6 y ( y 2 ) ( y + 5 )

    6.29

    ( a + 1 ) ( 2 a + 3 ) ( a + 1 ) ( 2 a + 3 )

    6.30

    ( b + 1 ) ( 4 b + 1 ) ( b + 1 ) ( 4 b + 1 )

    6.31

    ( 2 x 3 ) ( 4 x 1 ) ( 2 x 3 ) ( 4 x 1 )

    6.32

    ( 2 y 7 ) ( 5 y 1 ) ( 2 y 7 ) ( 5 y 1 )

    6.33

    ( 3 x + 2 y ) ( 6 x 5 y ) ( 3 x + 2 y ) ( 6 x 5 y )

    6.34

    ( 3 x + y ) ( 10 x 21 y ) ( 3 x + y ) ( 10 x 21 y )

    6.35

    5 n ( n 4 ) ( 3 n 5 ) 5 n ( n 4 ) ( 3 n 5 )

    6.36

    8 q ( q + 6 ) ( 7 q 2 ) 8 q ( q + 6 ) ( 7 q 2 )

    6.37

    ( x + 2 ) ( 6 x + 1 ) ( x + 2 ) ( 6 x + 1 )

    6.38

    ( 2 y + 1 ) ( 2 y + 3 ) ( 2 y + 1 ) ( 2 y + 3 )

    6.39

    4 ( 2 x 3 ) ( 2 x 1 ) 4 ( 2 x 3 ) ( 2 x 1 )

    6.40

    3 ( 3 w 2 ) ( 2 w 3 ) 3 ( 3 w 2 ) ( 2 w 3 )

    6.41

    ( h 2 2 ) ( h 2 + 6 ) ( h 2 2 ) ( h 2 + 6 )

    6.42

    ( y 2 + 4 ) ( y 2 5 ) ( y 2 + 4 ) ( y 2 5 )

    6.43

    ( x 3 ) ( x 1 ) ( x 3 ) ( x 1 )

    6.44

    ( y 1 ) ( y + 1 ) ( y 1 ) ( y + 1 )

    6.45

    ( 2 x + 3 ) 2 ( 2 x + 3 ) 2

    6.46

    ( 3 y + 4 ) 2 ( 3 y + 4 ) 2

    6.47

    ( 8 y 5 ) 2 ( 8 y 5 ) 2

    6.48

    ( 4 z 9 ) 2 ( 4 z 9 ) 2

    6.49

    ( 7 x + 6 y ) 2 ( 7 x + 6 y ) 2

    6.50

    ( 8 m + 7 n ) 2 ( 8 m + 7 n ) 2

    6.51

    2 y ( 2 x 3 ) 2 2 y ( 2 x 3 ) 2

    6.52

    3 q ( 3 p + 5 ) 2 3 q ( 3 p + 5 ) 2

    6.53

    ( 11 m 1 ) ( 11 m + 1 ) ( 11 m 1 ) ( 11 m + 1 )

    6.54

    ( 9 y 1 ) ( 9 y + 1 ) ( 9 y 1 ) ( 9 y + 1 )

    6.55

    ( 14 m 5 n ) ( 14 m + 5 n ) ( 14 m 5 n ) ( 14 m + 5 n )

    6.56

    ( 11 p 3 q ) ( 11 p + 3 q ) ( 11 p 3 q ) ( 11 p + 3 q )

    6.57

    2 y 2 ( x 2 ) ( x + 2 ) ( x 2 + 4 ) 2 y 2 ( x 2 ) ( x + 2 ) ( x 2 + 4 )

    6.58

    7 c 2 ( a b ) ( a + b ) ( a 2 + b 2 ) 7 c 2 ( a b ) ( a + b ) ( a 2 + b 2 )

    6.59

    ( x 5 y ) ( x 5 + y ) ( x 5 y ) ( x 5 + y )

    6.60

    ( x + 3 2 y ) ( x + 3 + 2 y ) ( x + 3 2 y ) ( x + 3 + 2 y )

    6.61

    ( x + 3 ) ( x 2 3 x + 9 ) ( x + 3 ) ( x 2 3 x + 9 )

    6.62

    ( y + 2 ) ( y 2 2 y + 4 ) ( y + 2 ) ( y 2 2 y + 4 )

    6.63

    ( 2 x 3 y ) ( 4 x 2 + 6 x y + 9 y 2 ) ( 2 x 3 y ) ( 4 x 2 + 6 x y + 9 y 2 )

    6.64

    125 ( 2 m n ) ( 4 m 2 + 2 m n + n 2 ) 125 ( 2 m n ) ( 4 m 2 + 2 m n + n 2 )

    6.65

    4 ( 5 p + q ) ( 25 p 2 5 p q + q 2 ) 4 ( 5 p + q ) ( 25 p 2 5 p q + q 2 )

    6.66

    2 ( 6 c + 7 d ) ( 36 c 2 42 c d + 49 d 2 ) 2 ( 6 c + 7 d ) ( 36 c 2 42 c d + 49 d 2 )

    6.67

    ( −2 y + 1 ) ( 13 y 2 + 5 y + 1 ) ( −2 y + 1 ) ( 13 y 2 + 5 y + 1 )

    6.68

    ( −4 n + 3 ) ( 31 n 2 + 21 n + 9 ) ( −4 n + 3 ) ( 31 n 2 + 21 n + 9 )

    6.69

    8 y ( y 1 ) ( y + 3 ) 8 y ( y 1 ) ( y + 3 )

    6.70

    5 y ( y 9 ) ( y + 6 ) 5 y ( y 9 ) ( y + 6 )

    6.71

    4 x ( 2 x 3 ) ( 2 x + 3 ) 4 x ( 2 x 3 ) ( 2 x + 3 )

    6.72

    3 ( 3 y 4 ) ( 3 y + 4 ) 3 ( 3 y 4 ) ( 3 y + 4 )

    6.73

    ( 2 x + 5 y ) 2 ( 2 x + 5 y ) 2

    6.74

    ( 3 x 4 y ) 2 ( 3 x 4 y ) 2

    6.75

    2 x y ( 25 x 2 + 36 ) 2 x y ( 25 x 2 + 36 )

    6.76

    3 x y ( 9 y 2 + 16 ) 3 x y ( 9 y 2 + 16 )

    6.77

    2 ( 5 m + 6 n ) ( 25 m 2 30 m n + 36 n 2 ) 2 ( 5 m + 6 n ) ( 25 m 2 30 m n + 36 n 2 )

    6.78

    2 ( p + 3 q ) ( p 2 3 p q + 9 q 2 ) 2 ( p + 3 q ) ( p 2 3 p q + 9 q 2 )

    6.79

    4 a b ( a 2 + 4 ) ( a 2 ) ( a + 2 ) 4 a b ( a 2 + 4 ) ( a 2 ) ( a + 2 )

    6.80

    7 x y ( y 2 + 1 ) ( y 1 ) ( y + 1 ) 7 x y ( y 2 + 1 ) ( y 1 ) ( y + 1 )

    6.81

    6 ( x + b ) ( x 2 c ) 6 ( x + b ) ( x 2 c )

    6.82

    2 ( 4 x 1 ) ( 2 x + 3 y ) 2 ( 4 x 1 ) ( 2 x + 3 y )

    6.83

    4 q ( p 3 ) ( p 1 ) 4 q ( p 3 ) ( p 1 )

    6.84

    3 p ( 2 q + 1 ) ( q 2 ) 3 p ( 2 q + 1 ) ( q 2 )

    6.85

    ( 2 x 3 y 5 ) ( 2 x 3 y + 5 ) ( 2 x 3 y 5 ) ( 2 x 3 y + 5 )

    6.86

    ( 4 x 3 y 8 ) ( 4 x 3 y + 8 ) ( 4 x 3 y 8 ) ( 4 x 3 y + 8 )

    6.87

    m = 2 3 , m = 1 2 m = 2 3 , m = 1 2

    6.88

    p = 3 4 , p = 3 4 p = 3 4 , p = 3 4

    6.89

    c = 2 , c = 4 3 c = 2 , c = 4 3

    6.90

    d = 3 , d = 1 2 d = 3 , d = 1 2

    6.91

    p = 7 5 , p = 7 5 p = 7 5 , p = 7 5

    6.92

    x = 11 6 , x = 11 6 x = 11 6 , x = 11 6

    6.93

    m = 1 , m = 3 2 m = 1 , m = 3 2

    6.94

    k = 3 , k = −3 k = 3 , k = −3

    6.95

    a = 5 2 , a = 2 3 a = 5 2 , a = 2 3

    6.96

    b = −2 , b = 1 20 b = −2 , b = 1 20

    6.97

    x = 0 , x = 3 2 x = 0 , x = 3 2

    6.98

    y = 0 , y = 1 4 y = 0 , y = 1 4

    6.99

    x=−3x=−3 or x=5x=5
    (−3,7)(−3,7) (5,7)(5,7)

    6.100

    x=1x=1 or x=7x=7
    (1,−4)(1,−4) (7,−4)(7,−4)

    6.101

    x=1x=1 or x=52x=52
    (1,0),(1,0), (52,0)(52,0) (0,5)(0,5)

    6.102

    x=−3x=−3 or x=56x=56
    (−3,0),(−3,0), (56,0)(56,0) (0,−15)(0,−15)

    6.103

    −15,−17−15,−17 and 15, 17

    6.104

    −23,−21−23,−21 and 21, 23

    6.105

    The width is 5 feet and length is 6 feet.

    6.106

    The width of the patio is 12 feet and the length is 15 feet.

    6.107

    5 feet and 12 feet

    6.108

    The other leg is 24 feet and the hypotenuse is 25 feet.

    6.109

    5 seconds; 0 and 3 seconds; 196 feet

    6.110

    4 seconds; 0 and 2 seconds; 144 feet

    Section 6.1 Exercises

    1.

    2 p q 2 p q

    3.

    6 m 2 n 3 6 m 2 n 3

    5.

    2 a 2 a

    7.

    5 x 3 y 5 x 3 y

    9.

    3 ( 2 m + 3 ) 3 ( 2 m + 3 )

    11.

    9 ( n 7 ) 9 ( n 7 )

    13.

    3 ( x 2 + 2 x 3 ) 3 ( x 2 + 2 x 3 )

    15.

    2 ( 4 p 2 + 2 p + 1 ) 2 ( 4 p 2 + 2 p + 1 )

    17.

    8 y 2 ( y + 2 ) 8 y 2 ( y + 2 )

    19.

    5 x ( x 2 3 x + 4 ) 5 x ( x 2 3 x + 4 )

    21.

    3 x ( 8 x 2 4 x + 5 ) 3 x ( 8 x 2 4 x + 5 )

    23.

    6 y 2 ( 2 x + 3 x 2 5 y ) 6 y 2 ( 2 x + 3 x 2 5 y )

    25.

    4 x y ( 5 x 2 x y + 3 y 2 ) 4 x y ( 5 x 2 x y + 3 y 2 )

    27.

    −2 ( x + 2 ) −2 ( x + 2 )

    29.

    −2 x ( x 2 9 x + 4 ) −2 x ( x 2 9 x + 4 )

    31.

    −4 p q ( p 2 + 3 p q 4 q ) −4 p q ( p 2 + 3 p q 4 q )

    33.

    ( x + 1 ) ( 5 x + 3 ) ( x + 1 ) ( 5 x + 3 )

    35.

    ( b 2 ) ( 3 b 13 ) ( b 2 ) ( 3 b 13 )

    37.

    ( b + 5 ) ( a + 3 ) ( b + 5 ) ( a + 3 )

    39.

    ( y + 5 ) ( 8 y + 1 ) ( y + 5 ) ( 8 y + 1 )

    41.

    ( u + 2 ) ( v 9 ) ( u + 2 ) ( v 9 )

    43.

    ( u 1 ) ( u + 6 ) ( u 1 ) ( u + 6 )

    45.

    ( 3 p 5 ) ( 3 p + 4 ) ( 3 p 5 ) ( 3 p + 4 )

    47.

    ( n 6 ) ( m 4 ) ( n 6 ) ( m 4 )

    49.

    ( x 7 ) ( 2 x 5 ) ( x 7 ) ( 2 x 5 )

    51.

    −9 x y ( 2 y + 3 x ) −9 x y ( 2 y + 3 x )

    53.

    ( x 2 + 2 ) ( 3 x 7 ) ( x 2 + 2 ) ( 3 x 7 )

    55.

    ( x + y ) ( x + 5 ) ( x + y ) ( x + 5 )

    57.

    Answers will vary.

    59.

    Answers will vary.

    Section 6.2 Exercises

    61.

    ( p + 5 ) ( p + 6 ) ( p + 5 ) ( p + 6 )

    63.

    ( n + 3 ) ( n + 16 ) ( n + 3 ) ( n + 16 )

    65.

    ( a + 5 ) ( a + 20 ) ( a + 5 ) ( a + 20 )

    67.

    ( x 2 ) ( x 6 ) ( x 2 ) ( x 6 )

    69.

    ( y 3 ) ( y 15 ) ( y 3 ) ( y 15 )

    71.

    ( x 1 ) ( x 7 ) ( x 1 ) ( x 7 )

    73.

    ( p 1 ) ( p + 6 ) ( p 1 ) ( p + 6 )

    75.

    ( x 4 ) ( x 2 ) ( x 4 ) ( x 2 )

    77.

    ( x 12 ) ( x + 1 ) ( x 12 ) ( x + 1 )

    79.

    ( x + 8 y ) ( x 10 y ) ( x + 8 y ) ( x 10 y )

    81.

    ( m + n ) ( m 65 n ) ( m + n ) ( m 65 n )

    83.

    ( a + 8 b ) ( a 3 b ) ( a + 8 b ) ( a 3 b )

    85.

    Prime

    87.

    Prime

    89.

    p ( p 10 ) ( p + 2 ) p ( p 10 ) ( p + 2 )

    91.

    3 m ( m 5 ) ( m 2 ) 3 m ( m 5 ) ( m 2 )

    93.

    5 x 2 ( x 3 ) ( x + 5 ) 5 x 2 ( x 3 ) ( x + 5 )

    95.

    ( 2 t + 5 ) ( t + 1 ) ( 2 t + 5 ) ( t + 1 )

    97.

    ( 11 x + 1 ) ( x + 3 ) ( 11 x + 1 ) ( x + 3 )

    99.

    ( 4 w 1 ) ( w 1 ) ( 4 w 1 ) ( w 1 )

    101.

    ( 4 q + 1 ) ( q 2 ) ( 4 q + 1 ) ( q 2 )

    103.

    ( 2 p 5 q ) ( 3 p 2 q ) ( 2 p 5 q ) ( 3 p 2 q )

    105.

    ( 4 a 3 b ) ( a + 5 b ) ( 4 a 3 b ) ( a + 5 b )

    107.

    −16 ( x + 1 ) ( x + 1 ) −16 ( x + 1 ) ( x + 1 )

    109.

    −10 q ( 3 q + 2 ) ( q + 4 ) −10 q ( 3 q + 2 ) ( q + 4 )

    111.

    ( 5 n + 1 ) ( n + 4 ) ( 5 n + 1 ) ( n + 4 )

    113.

    ( 2 k 3 ) ( 2 k 5 ) ( 2 k 3 ) ( 2 k 5 )

    115.

    ( 3 y + 5 ) ( 2 y 3 ) ( 3 y + 5 ) ( 2 y 3 )

    117.

    ( 2 n + 3 ) ( n 15 ) ( 2 n + 3 ) ( n 15 )

    119.

    10 ( 6 y 1 ) ( y + 5 ) 10 ( 6 y 1 ) ( y + 5 )

    121.

    3 z ( 8 z + 3 ) ( 2 z 5 ) 3 z ( 8 z + 3 ) ( 2 z 5 )

    123.

    8 ( 2 s + 3 ) ( s + 1 ) 8 ( 2 s + 3 ) ( s + 1 )

    125.

    12 ( 4 y 3 ) ( y + 1 ) 12 ( 4 y 3 ) ( y + 1 )

    127.

    ( x 2 + 1 ) ( x 2 7 ) ( x 2 + 1 ) ( x 2 7 )

    129.

    ( x 2 7 ) ( x 2 + 4 ) ( x 2 7 ) ( x 2 + 4 )

    131.

    ( x 12 ) ( x + 1 ) ( x 12 ) ( x + 1 )

    133.

    ( 3 y 4 ) ( 3 y 1 ) ( 3 y 4 ) ( 3 y 1 )

    135.

    ( u 6 ) ( u 6 ) ( u 6 ) ( u 6 )

    137.

    ( r 4 s ) ( r 16 s ) ( r 4 s ) ( r 16 s )

    139.

    ( 4 y 7 ) ( 3 y 2 ) ( 4 y 7 ) ( 3 y 2 )

    141.

    ( 2 n 1 ) ( 3 n + 4 ) ( 2 n 1 ) ( 3 n + 4 )

    143.

    13 ( z 2 + 3 z 2 ) 13 ( z 2 + 3 z 2 )

    145.

    3 p ( p + 7 ) 3 p ( p + 7 )

    147.

    6 ( r + 2 ) ( r + 3 ) 6 ( r + 2 ) ( r + 3 )

    149.

    4 ( 2 n + 1 ) ( 3 n + 1 ) 4 ( 2 n + 1 ) ( 3 n + 1 )

    151.

    ( x 2 + 2 ) ( x 2 6 ) ( x 2 + 2 ) ( x 2 6 )

    153.

    ( x 9 ) ( x + 6 ) ( x 9 ) ( x + 6 )

    155.

    Answers will vary.

    157.

    Answers will vary.

    Section 6.3 Exercises

    159.

    ( 4 y + 3 ) 2 ( 4 y + 3 ) 2

    161.

    ( 6 s + 7 ) 2 ( 6 s + 7 ) 2

    163.

    ( 10 x 1 ) 2 ( 10 x 1 ) 2

    165.

    ( 5 n 12 ) 2 ( 5 n 12 ) 2

    167.

    ( 7 x + 2 y ) 2 ( 7 x + 2 y ) 2

    169.

    ( 10 y 1 ) 2 ( 10 y 1 ) 2

    171.

    10 j ( k + 4 ) 2 10 j ( k + 4 ) 2

    173.

    3 u 2 ( 5 u v ) 2 3 u 2 ( 5 u v ) 2

    175.

    ( 5 v 1 ) ( 5 v + 1 ) ( 5 v 1 ) ( 5 v + 1 )

    177.

    ( 2 7 x ) ( 2 + 7 x ) ( 2 7 x ) ( 2 + 7 x )

    179.

    6 p 2 ( q 3 ) ( q + 3 ) 6 p 2 ( q 3 ) ( q + 3 )

    181.

    6 ( 4 p 2 + 9 ) 6 ( 4 p 2 + 9 )

    183.

    ( 11 x 12 y ) ( 11 x + 12 y ) ( 11 x 12 y ) ( 11 x + 12 y )

    185.

    ( 13 c 6 d ) ( 13 c + 6 d ) ( 13 c 6 d ) ( 13 c + 6 d )

    187.

    ( 2 z 1 ) ( 2 z + 1 ) ( 4 z 2 + 1 ) ( 2 z 1 ) ( 2 z + 1 ) ( 4 z 2 + 1 )

    189.

    2 b 2 ( 3 a 2 ) ( 3 a + 2 ) ( 9 a 2 + 4 ) 2 b 2 ( 3 a 2 ) ( 3 a + 2 ) ( 9 a 2 + 4 )

    191.

    ( x 8 y ) ( x 8 + y ) ( x 8 y ) ( x 8 + y )

    193.

    ( a + 3 3 b ) ( a + 3 + 3 b ) ( a + 3 3 b ) ( a + 3 + 3 b )

    195.

    ( x + 5 ) ( x 2 5 x + 25 ) ( x + 5 ) ( x 2 5 x + 25 )

    197.

    ( z 2 3 ) ( z 4 + 3 z 2 + 9 ) ( z 2 3 ) ( z 4 + 3 z 2 + 9 )

    199.

    ( 2 7 t ) ( 4 + 14 t + 49 t 2 ) ( 2 7 t ) ( 4 + 14 t + 49 t 2 )

    201.

    ( 2 y 5 z ) ( 4 y 2 + 10 y z + 25 z 2 ) ( 2 y 5 z ) ( 4 y 2 + 10 y z + 25 z 2 )

    203.

    ( 6 a + 5 b ) ( 36 a 2 30 a b + 25 b 2 ) ( 6 a + 5 b ) ( 36 a 2 30 a b + 25 b 2 )

    205.

    7 ( k + 2 ) ( k 2 2 k + 4 ) 7 ( k + 2 ) ( k 2 2 k + 4 )

    207.

    2 x 2 ( 1 2 y ) ( 1 + 2 y + 4 y 2 ) 2 x 2 ( 1 2 y ) ( 1 + 2 y + 4 y 2 )

    209.

    9 ( x + 1 ) ( x 2 + 3 ) 9 ( x + 1 ) ( x 2 + 3 )

    211.

    ( 3 y + 5 ) ( 21 y 2 30 y + 25 ) ( 3 y + 5 ) ( 21 y 2 30 y + 25 )

    213.

    ( 8 a 5 ) ( 8 a + 5 ) ( 8 a 5 ) ( 8 a + 5 )

    215.

    3 ( 3 q 1 ) ( 3 q + 1 ) 3 ( 3 q 1 ) ( 3 q + 1 )

    217.

    ( 4 x 9 ) 2 ( 4 x 9 ) 2

    219.

    2 ( 4 p 2 + 1 ) 2 ( 4 p 2 + 1 )

    221.

    ( 5 2 y ) ( 25 + 10 y + 4 y 2 ) ( 5 2 y ) ( 25 + 10 y + 4 y 2 )

    223.

    5 ( 3 n + 2 ) 2 5 ( 3 n + 2 ) 2

    225.

    ( x 5 y ) ( x 5 + y ) ( x 5 y ) ( x 5 + y )

    227.

    ( 3 x + 1 ) ( 3 x 2 + 1 ) ( 3 x + 1 ) ( 3 x 2 + 1 )

    229.

    Answers will vary.

    231.

    Answers will vary.

    Section 6.4 Exercises

    233.

    ( 2 n 1 ) ( n + 7 ) ( 2 n 1 ) ( n + 7 )

    235.

    a 3 ( a 2 + 9 ) a 3 ( a 2 + 9 )

    237.

    ( 11 r s ) ( 11 r + s ) ( 11 r s ) ( 11 r + s )

    239.

    8 ( m 2 ) ( m + 2 ) 8 ( m 2 ) ( m + 2 )

    241.

    ( 5 w 6 ) 2 ( 5 w 6 ) 2

    243.

    ( m + 7 n ) 2 ( m + 7 n ) 2

    245.

    7 ( b + 3 ) ( b 2 ) 7 ( b + 3 ) ( b 2 )

    247.

    3 x y ( x 3 ) ( x 2 + 3 x + 9 ) 3 x y ( x 3 ) ( x 2 + 3 x + 9 )

    249.

    ( k 2 ) ( k + 2 ) ( k 2 + 4 ) ( k 2 ) ( k + 2 ) ( k 2 + 4 )

    251.

    5 x y 2 ( x 2 + 4 ) ( x + 2 ) ( x 2 ) 5 x y 2 ( x 2 + 4 ) ( x + 2 ) ( x 2 )

    253.

    3 ( 5 p + 4 ) ( q 1 ) 3 ( 5 p + 4 ) ( q 1 )

    255.

    4 ( x + 3 ) ( x + 7 ) 4 ( x + 3 ) ( x + 7 )

    257.

    4 u 2 ( u + v ) ( u 2 u v + v 2 ) 4 u 2 ( u + v ) ( u 2 u v + v 2 )

    259.

    prime

    261.

    10 ( m 5 ) ( m + 5 ) ( m 2 + 25 ) 10 ( m 5 ) ( m + 5 ) ( m 2 + 25 )

    263.

    3 y ( 3 x + 2 ) ( 4 x 1 ) 3 y ( 3 x + 2 ) ( 4 x 1 )

    265.

    ( 2 x 3 y ) ( 4 x 2 + 6 x y + 9 y 2 ) ( 2 x 3 y ) ( 4 x 2 + 6 x y + 9 y 2 )

    267.

    ( y + 1 ) ( y 1 ) ( y 2 y + 1 ) ( y 2 + y + 1 ) ( y + 1 ) ( y 1 ) ( y 2 y + 1 ) ( y 2 + y + 1 )

    269.

    ( 3 x y + 7 ) ( 3 x y 7 ) ( 3 x y + 7 ) ( 3 x y 7 )

    271.

    ( 3 x 2 ) 2 ( 3 x 2 ) 2

    273.

    Answers will vary.

    275.

    Answers will vary.

    Section 6.5 Exercises

    277.

    a = 10 / 3 , a = 7 / 2 a = 10 / 3 , a = 7 / 2

    279.

    m = 0 , m = 5 / 12 m = 0 , m = 5 / 12

    281.

    x = 1 / 2 x = 1 / 2

    283.

    a = −4 5 , a = 6 a = −4 5 , a = 6

    285.

    m = 5 / 4 , m = 3 m = 5 / 4 , m = 3

    287.

    a = −1 , a = 0 a = −1 , a = 0

    289.

    m = 12 / 7 , m = −12 / 7 m = 12 / 7 , m = −12 / 7

    291.

    y = −9 / 4 , y = 9 / 4 y = −9 / 4 , y = 9 / 4

    293.

    n = −6 / 11 , n = 6 / 11 n = −6 / 11 , n = 6 / 11

    295.

    x = 2 , x = −5 x = 2 , x = −5

    297.

    x = 3 / 2 , x = −1 x = 3 / 2 , x = −1

    299.

    x = 2 , x = −4 / 3 x = 2 , x = −4 / 3

    301.

    x = 3 / 2 x = 3 / 2

    303.

    x = 2 , x = −4 / 3 x = 2 , x = −4 / 3

    305.

    x = −3 / 2 , x = 1 / 3 x = −3 / 2 , x = 1 / 3

    307.

    p = 0 , p = ¾ p = 0 , p = ¾

    309.

    x = 0 , x = 6 x = 0 , x = 6

    311.

    x = 0 , x = –1 / 3 x = 0 , x = –1 / 3

    313.

    x=2x=2 or x=6x=6 (2,−4)(2,−4) (6,−4)(6,−4)

    315.

    x=32x=32 or x=34x=34
    (32,−4)(32,−4) (34,−4)(34,−4)

    317.

    x=23x=23 or x=23x=23
    (23,0)(23,0), (23,0)(23,0) (0,−4)(0,−4)

    319.

    x=53x=53 or x=12x=12
    (53,0)(53,0), (12,0)(12,0) (0,−5)(0,−5)

    321.

    −13,−11−13,−11 and 11, 13

    323.

    −14,−12−14,−12 and 12, 14

    325.

    Width: 4 feet; Length: 7 feet.

    327.

    Width: 5 feet; Length: 11 feet.

    329.

    The sides are 6 feet and 8 feet.

    331.

    The building side is 8 feet, the hypotenuse is 17 feet, and the third side is 15 feet.

    333.

    0 seconds and 2 seconds 1 second

    335.

    Answers will vary.

    Review Exercises

    337.

    3 a b 2 3 a b 2

    339.

    3 y 3 y

    341.

    7 ( 5 y + 12 ) 7 ( 5 y + 12 )

    343.

    3 x ( 6 x 2 5 ) 3 x ( 6 x 2 5 )

    345.

    4 x ( x 2 3 x + 4 ) 4 x ( x 2 3 x + 4 )

    347.

    −3 x ( x 2 9 x + 4 ) −3 x ( x 2 9 x + 4 )

    349.

    ( a + b ) ( x y ) ( a + b ) ( x y )

    351.

    ( x 3 ) ( x + 7 ) ( x 3 ) ( x + 7 )

    353.

    ( m 2 + 1 ) ( m + 1 ) ( m 2 + 1 ) ( m + 1 )

    355.

    ( a + 3 ) ( a + 11 ) ( a + 3 ) ( a + 11 )

    357.

    ( m + 9 ) ( m 6 ) ( m + 9 ) ( m 6 )

    359.

    ( x + 5 y ) ( x + 7 y ) ( x + 5 y ) ( x + 7 y )

    361.

    ( a + 7 b ) ( a 3 b ) ( a + 7 b ) ( a 3 b )

    363.

    Prime

    365.

    3 y ( y 5 ) ( y 2 ) 3 y ( y 5 ) ( y 2 )

    367.

    ( 5 y + 9 ) ( y + 1 ) ( 5 y + 9 ) ( y + 1 )

    369.

    ( 5 y + 1 ) ( 2 y 11 ) ( 5 y + 1 ) ( 2 y 11 )

    371.

    −9 ( 9 a + 1 ) ( a 2 ) −9 ( 9 a + 1 ) ( a 2 )

    373.

    ( 3 a 1 ) ( 6 a 1 ) ( 3 a 1 ) ( 6 a 1 )

    375.

    Prime

    377.

    3 ( x + 4 ) ( x 3 ) 3 ( x + 4 ) ( x 3 )

    379.

    3 ( 2 a 7 ) ( 3 a + 1 ) 3 ( 2 a 7 ) ( 3 a + 1 )

    381.

    ( x 2 15 ) ( x 2 + 2 ) ( x 2 15 ) ( x 2 + 2 )

    383.

    ( 5 x + 3 ) 2 ( 5 x + 3 ) 2

    385.

    10 ( 2 x + 9 ) 2 10 ( 2 x + 9 ) 2

    387.

    3 u 2 ( 5 u v ) 2 3 u 2 ( 5 u v ) 2

    389.

    ( 13 m + n ) ( 13 m n ) ( 13 m + n ) ( 13 m n )

    391.

    ( 3 + 11 y ) ( 3 11 y ) ( 3 + 11 y ) ( 3 11 y )

    393.

    n ( 13 n + 1 ) ( 13 n 1 ) n ( 13 n + 1 ) ( 13 n 1 )

    395.

    6 ( 4 p 2 + 9 ) 6 ( 4 p 2 + 9 )

    397.

    ( 2 z 1 ) ( 2 z + 1 ) ( 4 z 2 + 1 ) ( 2 z 1 ) ( 2 z + 1 ) ( 4 z 2 + 1 )

    399.

    ( a + 3 3 b ) ( a + 3 + 3 b ) ( a + 3 3 b ) ( a + 3 + 3 b )

    401.

    ( a 5 ) ( a 2 + 5 a + 25 ) ( a 5 ) ( a 2 + 5 a + 25 )

    403.

    2 ( m + 3 ) ( m 2 3 m + 9 ) 2 ( m + 3 ) ( m 2 3 m + 9 )

    405.

    4 x 2 ( 6 x + 11 ) 4 x 2 ( 6 x + 11 )

    407.

    ( 4 n 7 m ) 2 ( 4 n 7 m ) 2

    409.

    5 u 2 ( u + 3 ) ( u 3 ) 5 u 2 ( u + 3 ) ( u 3 )

    411.

    prime

    413.

    ( b 4 ) ( b 2 + 4 b + 16 ) ( b 4 ) ( b 2 + 4 b + 16 )

    415.

    ( 2 b + 5 c ) ( b c ) ( 2 b + 5 c ) ( b c )

    417.

    5 ( q + 3 ) ( q 6 ) 5 ( q + 3 ) ( q 6 )

    419.

    10 ( m 5 ) ( m + 5 ) ( m 2 + 25 ) 10 ( m 5 ) ( m + 5 ) ( m 2 + 25 )

    421.

    ( 4 x 3 y + 8 ) ( 4 x 3 y 8 ) ( 4 x 3 y + 8 ) ( 4 x 3 y 8 )

    423.

    b = −1 / 5 , b = −1 / 6 b = −1 / 5 , b = −1 / 6

    425.

    x = 1 / 2 x = 1 / 2

    427.

    x = −4 , x = −5 x = −4 , x = −5

    429.

    p = 5 2 , p = 8 p = 5 2 , p = 8

    431.

    m = 5 12 , m = 5 12 m = 5 12 , m = 5 12

    433.

    x = 2 , x = −5 x = 2 , x = −5

    435.

    p = 0 , p = ¾ p = 0 , p = ¾

    437.

    x=−7x=−7 or x=−4x=−4
    (−7,−8)(−7,−8) (−4,−8)(−4,−8)

    439.

    x=78x=78 or x=78x=78
    (78,0),(78,0), (78,0)(78,0) (0,−49)(0,−49)

    441.

    The numbers are −21−21 and −19−19 or 19 and 21.

    443.

    The lengths are 8, 15, and 17 ft.

    Practice Test

    445.

    40 a 2 ( 2 + 3 a ) 40 a 2 ( 2 + 3 a )

    447.

    ( x + 4 ) ( x + 9 ) ( x + 4 ) ( x + 9 )

    449.

    ( x 8 ) ( y + 7 ) ( x 8 ) ( y + 7 )

    451.

    ( 3 s 2 ) 2 ( 3 s 2 ) 2

    453.

    3 ( x + 5 y ) ( x 5 y ) 3 ( x + 5 y ) ( x 5 y )

    455.

    ( x + 5 ) ( x 2 5 x + 25 ) ( x + 5 ) ( x 2 5 x + 25 )

    457.

    ( 3 x 2 5 ) ( 2 x 2 3 ) ( 3 x 2 5 ) ( 2 x 2 3 )

    459.

    a = 4 / 5 , a = −6 a = 4 / 5 , a = −6

    461.

    The width is 12 inches and the length is 14 inches.

    463.

    x=3x=3 or x=4x=4 (3,−7)(3,−7) (4,−7)(4,−7)


    13.1.6: Chapter 6 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?