13.1.6: Chapter 6
( \newcommand{\kernel}{\mathrm{null}\,}\)
Be Prepared
2·2·2·7
72
−21a2−24ab
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72
6y2+23y+20
−54, 54
27x6
m2+8m+16
x2−9
y=35
n(n−11)(n+2)
8;x=2
Try It
5m2
7x
3y2(3x+2x2+7y)
3p(p2−2pq+3q2)
2x2(x+6)
3y2(2y−5)
3xy(5x2−xy+2y2)
2ab(4a2+ab−3b2)
−4b(b2−4b+2)
−7a(a2−3a+2)
(m+3)(4m−7)
(n−4)(8n+5)
(x+8)(y+3)
(a+7)(b+8)
ⓐ (x−5)(x+2)
ⓑ (5x−4)(4x−3)
ⓐ (y+4)(y−7)
ⓑ (7m−3)(6m−5)
(q+4)(q+6)
(t+2)(t+12)
(u−3)(u−6)
(y−7)(y−9)
(m+3)(m+6)
(n−3)(n−4)
(a−b)(a−10b)
(m−n)(m−12n)
prime
prime
5x(x−1)(x+4)
6y(y−2)(y+5)
(a+1)(2a+3)
(b+1)(4b+1)
(2x−3)(4x−1)
(2y−7)(5y−1)
(3x+2y)(6x−5y)
(3x+y)(10x−21y)
5n(n−4)(3n−5)
8q(q+6)(7q−2)
(x+2)(6x+1)
(2y+1)(2y+3)
4(2x−3)(2x−1)
3(3w−2)(2w−3)
(h2−2)(h2+6)
(y2+4)(y2−5)
(x−3)(x−1)
(y−1)(y+1)
(2x+3)2
(3y+4)2
(8y−5)2
(4z−9)2
(7x+6y)2
(8m+7n)2
2y(2x−3)2
3q(3p+5)2
(11m−1)(11m+1)
(9y−1)(9y+1)
(14m−5n)(14m+5n)
(11p−3q)(11p+3q)
2y2(x−2)(x+2)(x2+4)
7c2(a−b)(a+b)(a2+b2)
(x−5−y)(x−5+y)
(x+3−2y)(x+3+2y)
(x+3)(x2−3x+9)
(y+2)(y2−2y+4)
(2x−3y)(4x2+6xy+9y2)
125(2m−n)(4m2+2mn+n2)
4(5p+q)(25p2−5pq+q2)
2(6c+7d)(36c2−42cd+49d2)
(−2y+1)(13y2+5y+1)
(−4n+3)(31n2+21n+9)
8y(y−1)(y+3)
5y(y−9)(y+6)
4x(2x−3)(2x+3)
3(3y−4)(3y+4)
(2x+5y)2
(3x−4y)2
2xy(25x2+36)
3xy(9y2+16)
2(5m+6n)(25m2−30mn+36n2)
2(p+3q)(p2−3pq+9q2)
4ab(a2+4)(a−2)(a+2)
7xy(y2+1)(y−1)(y+1)
6(x+b)(x−2c)
2(4x−1)(2x+3y)
4q(p−3)(p−1)
3p(2q+1)(q−2)
(2x−3y−5)(2x−3y+5)
(4x−3y−8)(4x−3y+8)
m=23,m=−12
p=−34,p=34
c=2,c=43
d=3,d=−12
p=75,p=−75
x=116,x=−116
m=1,m=32
k=3,k=−3
a=−52,a=23
b=−2,b=−120
x=0,x=32
y=0,y=14
ⓐ x=−3 or x=5
ⓑ (−3,7) (5,7)
ⓐ x=1 or x=7
ⓑ (1,−4) (7,−4)
ⓐ x=1 or x=52
ⓑ (1,0), (52,0) ⓒ (0,5)
ⓐ x=−3 or x=56
ⓑ (−3,0), (56,0) ⓒ (0,−15)
−15,−17 and 15, 17
−23,−21 and 21, 23
The width is 5 feet and length is 6 feet.
The width of the patio is 12 feet and the length is 15 feet.
5 feet and 12 feet
The other leg is 24 feet and the hypotenuse is 25 feet.
ⓐ 5 seconds; ⓑ 0 and 3 seconds; ⓒ 196 feet
ⓐ 4 seconds; ⓑ 0 and 2 seconds; ⓒ 144 feet
Section 6.1 Exercises
2pq
6m2n3
2a
5x3y
3(2m+3)
9(n−7)
3(x2+2x−3)
2(4p2+2p+1)
8y2(y+2)
5x(x2−3x+4)
3x(8x2−4x+5)
6y2(2x+3x2−5y)
4xy(5x2−xy+3y2)
−2(x+2)
−2x(x2−9x+4)
−4pq(p2+3pq−4q)
(x+1)(5x+3)
(b−2)(3b−13)
(b+5)(a+3)
(y+5)(8y+1)
(u+2)(v−9)
(u−1)(u+6)
(3p−5)(3p+4)
(n−6)(m−4)
(x−7)(2x−5)
−9xy(2y+3x)
(x2+2)(3x−7)
(x+y)(x+5)
Answers will vary.
Answers will vary.
Section 6.2 Exercises
(p+5)(p+6)
(n+3)(n+16)
(a+5)(a+20)
(x−2)(x−6)
(y−3)(y−15)
(x−1)(x−7)
(p−1)(p+6)
(x−4)(x−2)
(x−12)(x+1)
(x+8y)(x−10y)
(m+n)(m−65n)
(a+8b)(a−3b)
Prime
Prime
p(p−10)(p+2)
3m(m−5)(m−2)
5x2(x−3)(x+5)
(2t+5)(t+1)
(11x+1)(x+3)
(4w−1)(w−1)
(4q+1)(q−2)
(2p−5q)(3p−2q)
(4a−3b)(a+5b)
−16(x+1)(x+1)
−10q(3q+2)(q+4)
(5n+1)(n+4)
(2k−3)(2k−5)
(3y+5)(2y−3)
(2n+3)(n−15)
10(6y−1)(y+5)
3z(8z+3)(2z−5)
8(2s+3)(s+1)
12(4y−3)(y+1)
(x2+1)(x2−7)
(x2−7)(x2+4)
(x−12)(x+1)
(3y−4)(3y−1)
(u−6)(u−6)
(r−4s)(r−16s)
(4y−7)(3y−2)
(2n−1)(3n+4)
13(z2+3z−2)
3p(p+7)
6(r+2)(r+3)
4(2n+1)(3n+1)
(x2+2)(x2−6)
(x−9)(x+6)
Answers will vary.
Answers will vary.
Section 6.3 Exercises
(4y+3)2
(6s+7)2
(10x−1)2
(5n−12)2
(7x+2y)2
(10y−1)2
10j(k+4)2
3u2(5u−v)2
(5v−1)(5v+1)
(2−7x)(2+7x)
6p2(q−3)(q+3)
6(4p2+9)
(11x−12y)(11x+12y)
(13c−6d)(13c+6d)
(2z−1)(2z+1)(4z2+1)
2b2(3a−2)(3a+2)(9a2+4)
(x−8−y)(x−8+y)
(a+3−3b)(a+3+3b)
(x+5)(x2−5x+25)
(z2−3)(z4+3z2+9)
(2−7t)(4+14t+49t2)
(2y−5z)(4y2+10yz+25z2)
(6a+5b)(36a2−30ab+25b2)
7(k+2)(k2−2k+4)
2x2(1−2y)(1+2y+4y2)
9(x+1)(x2+3)
−(3y+5)(21y2−30y+25)
(8a−5)(8a+5)
3(3q−1)(3q+1)
(4x−9)2
2(4p2+1)
(5−2y)(25+10y+4y2)
5(3n+2)2
(x−5−y)(x−5+y)
(3x+1)(3x2+1)
Answers will vary.
Answers will vary.
Section 6.4 Exercises
(2n−1)(n+7)
a3(a2+9)
(11r−s)(11r+s)
8(m−2)(m+2)
(5w−6)2
(m+7n)2
7(b+3)(b−2)
3xy(x−3)(x2+3x+9)
(k−2)(k+2)(k2+4)
5xy2(x2+4)(x+2)(x−2)
3(5p+4)(q−1)
4(x+3)(x+7)
4u2(u+v)(u2−uv+v2)
prime
10(m−5)(m+5)(m2+25)
3y(3x+2)(4x−1)
(2x−3y)(4x2+6xy+9y2)
(y+1)(y−1)(y2−y+1)(y2+y+1)
(3x−y+7)(3x−y−7)
(3x−2)2
Answers will vary.
Answers will vary.
Section 6.5 Exercises
a=10/3,a=7/2
m=0,m=5/12
x=1/2
a=−45,a=6
m=5/4,m=3
a=−1,a=0
m=12/7,m=−12/7
y=−9/4,y=9/4
n=−6/11,n=6/11
x=2,x=−5
x=3/2,x=−1
x=2,x=−4/3
x=3/2
x=2,x=−4/3
x=−3/2,x=1/3
p=0,p=¾
x=0,x=6
x=0,x=–1/3
ⓐ x=2 or x=6 ⓑ (2,−4) (6,−4)
ⓐ x=32 or x=34
ⓑ (32,−4) (34,−4)
ⓐ x=23 or x=−23
ⓑ (23,0), (−23,0) ⓒ (0,−4)
ⓐ x=53 or x=−12
ⓑ (53,0), (−12,0) ⓒ (0,−5)
−13,−11 and 11, 13
−14,−12 and 12, 14
Width: 4 feet; Length: 7 feet.
Width: 5 feet; Length: 11 feet.
The sides are 6 feet and 8 feet.
The building side is 8 feet, the hypotenuse is 17 feet, and the third side is 15 feet.
ⓐ 0 seconds and 2 seconds ⓑ 1 second
Answers will vary.
Review Exercises
3ab2
3y
7(5y+12)
3x(6x2−5)
4x(x2−3x+4)
−3x(x2−9x+4)
(a+b)(x−y)
(x−3)(x+7)
(m2+1)(m+1)
(a+3)(a+11)
(m+9)(m−6)
(x+5y)(x+7y)
(a+7b)(a−3b)
Prime
3y(y−5)(y−2)
(5y+9)(y+1)
(5y+1)(2y−11)
−9(9a+1)(a−2)
(3a−1)(6a−1)
Prime
3(x+4)(x−3)
3(2a−7)(3a+1)
(x2−15)(x2+2)
(5x+3)2
10(2x+9)2
3u2(5u−v)2
(13m+n)(13m−n)
(3+11y)(3−11y)
n(13n+1)(13n−1)
6(4p2+9)
(2z−1)(2z+1)(4z2+1)
(a+3−3b)(a+3+3b)
(a−5)(a2+5a+25)
2(m+3)(m2−3m+9)
4x2(6x+11)
(4n−7m)2
5u2(u+3)(u−3)
prime
(b−4)(b2+4b+16)
(2b+5c)(b−c)
5(q+3)(q−6)
10(m−5)(m+5)(m2+25)
(4x−3y+8)(4x−3y−8)
b=−1/5,b=−1/6
x=1/2
x=−4,x=−5
p=−52,p=8
m=512,m=−512
x=2,x=−5
p=0,p=¾
ⓐ x=−7 or x=−4
ⓑ (−7,−8) (−4,−8)
ⓐ x=78 or x=−78
ⓑ (78,0), (−78,0) ⓒ (0,−49)
The numbers are −21 and −19 or 19 and 21.
The lengths are 8, 15, and 17 ft.
Practice Test
40a2(2+3a)
(x+4)(x+9)
(x−8)(y+7)
(3s−2)2
3(x+5y)(x−5y)
(x+5)(x2−5x+25)
(3x2−5)(2x2−3)
a=4/5,a=−6
The width is 12 inches and the length is 14 inches.
ⓐ or ⓑ