Skip to main content
Mathematics LibreTexts

13.1.8: Chapter 8

  • Page ID
    117743
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Be Prepared

    8.1

    8; −1; -729

    8.2

    3.85

    8.3

    x6x6; y6y6; z12z12

    8.4

    x 5 x 5

    8.5

    1 y 8 1 y 8

    8.6

    n 12 n 12

    8.7

    53 60 53 60

    8.8

    64 x 6 y 15 64 x 6 y 15

    8.9

    1 125 1 125

    8.10

    2 x 2 + 11 x 8 2 x 2 + 11 x 8

    8.11

    8 + 2 a a 2 8 + 2 a a 2

    8.12

    81 90 y + 25 y 2 81 90 y + 25 y 2

    8.13

    5 8 5 8

    8.14

    x 6 x 6

    8.15

    49 9 x 2 49 9 x 2

    8.16

    y 2 6 y + 9 y 2 6 y + 9

    8.17

    x = 5 2 x = 5 2

    8.18

    n = 2 or n = 4 n = 2 or n = 4

    8.19

    ( , 1 2 ] ( , 1 2 ]

    8.20

    f ( 2 ) = 2 , f ( −1 ) = −7 , f ( 0 ) = −4 f ( 2 ) = 2 , f ( −1 ) = −7 , f ( 0 ) = −4

    8.21

    domain: [ 0 , ) ; range: [ 0 , ) domain: [ 0 , ) ; range: [ 0 , )

    8.22

    −4,0.5,73,3,81;−4,0.5,73,3,81; 7;7; −4,7,0.5,73,3,81−4,7,0.5,73,3,81

    8.23

    2 x 2 x 15 2 x 2 x 15

    8.24

    5 ( 15 ) 2 5 ( 15 ) 2

    Try It

    8.1

    −8−8 15

    8.2

    10 −11−11

    8.3

    not a real number −9−9

    8.4

    −7−7 not a real number

    8.5

    3 4 3

    8.6

    10 2 4

    8.7

    −3−3 not real −2−2

    8.8

    −6−6 not real −4−4

    8.9

    6<38<76<38<7
    4<933<54<933<5

    8.10

    9<84<109<84<10
    5<1523<65<1523<6

    8.11

    3.323.32 4.144.14
    3.363.36

    8.12

    3.613.61 4.384.38
    3.153.15

    8.13

    |b||b| w |m||m| q

    8.14

    |y||y| p |z||z| q

    8.15

    |y9||y9| z6z6

    8.16

    m2m2 |b5||b5|

    8.17

    |u3||u3| v5v5

    8.18

    c4c4 d4d4

    8.19

    8|x|8|x| −10|p|−10|p|

    8.20

    13|y|13|y| −11|y|−11|y|

    8.21

    3x93x9 3|q7|3|q7|

    8.22

    5q35q3 3q53q5

    8.23

    10|ab|10|ab| 12p6q1012p6q10
    2x10y42x10y4

    8.24

    15|mn|15|mn| 13|x5y7|13|x5y7|
    3w12z53w12z5

    8.25

    4 3 4 3

    8.26

    3 5 3 5

    8.27

    122122 333333 244244

    8.28

    123123 553553 394394

    8.29

    b2bb2b |y|y24|y|y24 zz23zz23

    8.30

    p4pp4p yy35yy35
    q2q6q2q6

    8.31

    4y22y4y22y 3p32p33p32p3
    2q24q242q24q24

    8.32

    5a43a5a43a 4m32m234m32m23
    3|n|2n343|n|2n34

    8.33

    7|a3|b22ab7|a3|b22ab
    2xy7x2y32xy7x2y3 2|x|y22x42|x|y22x4

    8.34

    6m4|n5|5mn6m4|n5|5mn
    2x2y9y232x2y9y23 2|xy|5x342|xy|5x34

    8.35

    −4−4 no real numberno real number

    8.36

    −553−553 no real number

    8.37

    5+535+53 2323

    8.38

    2+722+72 2525

    8.39

    5454 3535 2323

    8.40

    7979 2525 1313

    8.41

    |a||a| |x||x| y3y3

    8.42

    x2x2 m2m2 n2n2

    8.43

    2 | p | 6 p 7 2 | p | 6 p 7

    8.44

    2 x 2 3 x 5 2 x 2 3 x 5

    8.45

    4|m|5m|n3|4|m|5m|n3| 3c34c3d23c34c3d2
    2x25x24|y|2x25x24|y|

    8.46

    3u36uv43u36uv4 2r53s22r53s2
    3|m3|2m24|n3|3|m3|2m24|n3|

    8.47

    5|y|x65|y|x6 2xyy2332xyy233
    |ab|a42|ab|a42

    8.48

    2|m|35|n3|2|m|35|n3| 3xyx2353xyx235
    2|ab|a2432|ab|a243

    8.49

    7z27z2 −523−523
    3|m|2m243|m|2m24

    8.50

    8m48m4 −4−4 3|n|243|n|24

    8.51

    tt m3m3 r4r4

    8.52

    b6b6 z5z5 p4p4

    8.53

    (10m)12(10m)12 (3n)15(3n)15
    3(6y)143(6y)14

    8.54

    (3k)17(3k)17 (5j)14(5j)14
    8(2a)138(2a)13

    8.55

    6 2 2

    8.56

    10 3 3

    8.57

    No real solution −8−8
    1818

    8.58

    No real solution −4−4
    1414

    8.59

    x52x52 (3y)34(3y)34 (2m3n)52(2m3n)52

    8.60

    a25a25 (5ab)53(5ab)53
    (7xyz)32(7xyz)32

    8.61

    9 17291729 1818

    8.62

    8 1919 11251125

    8.63

    −64−64 164164 not a real number

    8.64

    −729−729 17291729 not a real number

    8.65

    x32x32 x8x8 1x1x

    8.66

    y118y118 m2m2 1d1d

    8.67

    8x158x15 x12y13x12y13

    8.68

    729n35729n35 a2b23a2b23

    8.69

    m2m2 5nm145nm14

    8.70

    u3u3 3x15y133x15y13

    8.71

    22 11x311x3
    3x45y43x45y4

    8.72

    −43−43 8y38y3
    5m42m35m42m3

    8.73

    −27x−27x 5xy45xy4

    8.74

    3y3y 37mn337mn3

    8.75

    9292 223223 3333

    8.76

    7373 −1053−1053 −323−323

    8.77

    m32mm32m x25x3x25x3

    8.78

    p3pp3p
    4y4y232n4n234y4y232n4n23

    8.79

    12151215 −1843−1843

    8.80

    272272 −3623−3623

    8.81

    288x35288x35 8y6y248y6y24

    8.82

    144y25y144y25y −36a3a4−36a3a4

    8.83

    18+618+6 −243233−243233

    8.84

    −40+42−40+42 −3183−3183

    8.85

    −66+157−66+157
    x235x3+6x235x3+6

    8.86

    411411411411
    x23+4x3+3x23+4x3+3

    8.87

    1 + 9 21 1 + 9 21

    8.88

    −12 20 3 −12 20 3

    8.89

    102+202102+202 55+6655+66

    8.90

    4112541125
    12136101213610

    8.91

    −11 −11

    8.92

    −159 −159

    8.93

    5s85s8 2a2a

    8.94

    5q265q26 2b2b

    8.95

    9x2y29x2y2 −4xy−4xy

    8.96

    10n3m10n3m −3pq2−3pq2

    8.97

    4 x y 2 x 4 x y 2 x

    8.98

    4 a b 3 b 4 a b 3 b

    8.99

    533533 6868 2xx2xx

    8.100

    655655 146146 5xx5xx

    8.101

    49374937 90369036 53y233y53y233y

    8.102

    432432 150310150310 25n235n25n235n

    8.103

    27432743 12441244 35x345x35x345x

    8.104

    1254512545 14441444
    24x34x24x34x

    8.105

    3 ( 1 + 5 ) 4 3 ( 1 + 5 ) 4

    8.106

    4 + 6 5 4 + 6 5

    8.107

    5 ( x 2 ) x 2 5 ( x 2 ) x 2

    8.108

    10 ( y + 3 ) y 3 10 ( y + 3 ) y 3

    8.109

    ( p + 2 ) p 2 2 ( p + 2 ) p 2 2

    8.110

    ( q 10 ) q 10 2 ( q 10 ) q 10 2

    8.111

    m = 23 3 m = 23 3

    8.112

    z = 3 10 z = 3 10

    8.113

    no solution no solution

    8.114

    no solution no solution

    8.115

    x = 2 , x = 3 x = 2 , x = 3

    8.116

    y = 5 , y = 6 y = 5 , y = 6

    8.117

    x = −6 x = −6

    8.118

    x = −9 x = −9

    8.119

    x = 8 x = 8

    8.120

    x = 6 x = 6

    8.121

    m = 7 m = 7

    8.122

    n = 3 n = 3

    8.123

    a = 63 a = 63

    8.124

    b = 311 b = 311

    8.125

    x = 3 x = 3

    8.126

    x = 6 5 x = 6 5

    8.127

    x = 4 x = 4

    8.128

    x = 9 x = 9

    8.129

    x = 5 x = 5

    8.130

    x = 0 x = 4 x = 0 x = 4

    8.131

    9 seconds

    8.132

    3.53.5 seconds

    8.133

    42.742.7 feet

    8.134

    54.154.1 feet

    8.135

    f(6)=4f(6)=4 no value at x=0x=0

    8.136

    g(4)=5g(4)=5 no value at f(−3)f(−3)

    8.137

    g(4)=2g(4)=2 g(1)=−1g(1)=−1

    8.138

    h(2)=2h(2)=2
    h(−5)=−3h(−5)=−3

    8.139

    f(4)=2f(4)=2 f(−1)=1f(−1)=1

    8.140

    g(16)=3g(16)=3 g(3)=2g(3)=2

    8.141

    [ 5 6 , ) [ 5 6 , )

    8.142

    ( , 4 5 ] ( , 4 5 ]

    8.143

    ( −3 , ) ( −3 , )

    8.144

    ( 5 , ) ( 5 , )

    8.145

    ( , ) ( , )

    8.146

    ( , ) ( , )

    8.147

    domain: [−2,)[−2,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 2 to 6. The y-axis runs from 0 to 8. The function has a starting point at (negative 2, 0) and goes through the points (negative 1, 1) and (2, 2).


    range: [0,)[0,)

    8.148

    domain: [2,)[2,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from 0 to 8. The y-axis runs from 0 to 6. The function has a starting point at (2, 0) and goes through the points (3, 1) and (6, 2).


    range: [0,)[0,)

    8.149

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 2 to 2. The y-axis runs from negative 2 to 2. The function has a center point at (0, 0) and goes through the points (1, negative 1) and (negative 1, 1).


    range: (,)(,)

    8.150

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 1 to 5. The y-axis runs from negative 3 to 3. The function has a center point at (2, 0) and goes through the points (1, negative 1) and (3, 2).


    range: (,)(,)

    8.151

    9i9i 5i5i 32i32i

    8.152

    6i6i 3i3i 33i33i

    8.153

    6 2 i 6 2 i

    8.154

    7 3 i 7 3 i

    8.155

    6+5i6+5i 63i63i

    8.156

    −26i−26i 2+9i2+9i

    8.157

    12 + 20 i 12 + 20 i

    8.158

    12 6 i 12 6 i

    8.159

    −11 7 i −11 7 i

    8.160

    −5 10 i −5 10 i

    8.161

    −21 20 i −21 20 i

    8.162

    9 40 i 9 40 i

    8.163

    −14 −14

    8.164

    −54 −54

    8.165

    −12 22 3 i −12 22 3 i

    8.166

    6 + 12 2 i 6 + 12 2 i

    8.167

    25

    8.168

    29

    8.169

    109

    8.170

    41

    8.171

    i

    8.172

    i

    8.173

    4 17 + 16 17 i 4 17 + 16 17 i

    8.174

    2 5 + 4 5 i 2 5 + 4 5 i

    8.175

    3 2 3 2 i 3 2 3 2 i

    8.176

    4 5 2 5 i 4 5 2 5 i

    8.177

    i i

    8.178

    1 1

    Section 8.1 Exercises

    1.

    8 −9−9

    3.

    14 −1−1

    5.

    2323 −0.1−0.1

    7.

    not real number −17−17

    9.

    −15−15 not real number

    11.

    6 4

    13.

    8 3 1

    15.

    −2−2 not realnot real −2−2

    17.

    −5−5 not realnot real −4−4

    19.

    8<70<98<70<9
    4<713<54<713<5

    21.

    14<200<1514<200<15
    5<1373<65<1373<6

    23.

    4.364.36 4.464.46
    3.143.14

    25.

    7.287.28 5.285.28
    4.614.61

    27.

    u |v||v|

    29.

    |y||y| mm

    31.

    |x3||x3| y8y8

    33.

    x12x12 |y11||y11|

    35.

    x3x3 |y3||y3|

    37.

    m2m2 n4n4

    39.

    7|x|7|x| −9|x9|−9|x9|

    41.

    11m1011m10 −8|a|−8|a|

    43.

    2x22x2 2y22y2

    45.

    6a26a2 2b42b4

    47.

    12|xy|12|xy| 13w4|y5|13w4|y5|
    2a17b22a17b2

    49.

    11|ab|11|ab| 3c4d63c4d6
    4x5y224x5y22

    51.

    Answers will vary.

    53.

    Answers will vary.

    Section 8.2 Exercises

    55.

    3 3 3 3

    57.

    5 5 5 5

    59.

    7 3 7 3

    61.

    20 2 20 2

    63.

    224224 225225

    65.

    244244 443443

    67.

    | y5 |y| y5 |y rr23rr23 s2s24s2s24

    69.

    n10nn10n q2q23q2q23
    |n|n28|n|n28

    71.

    5r65r5r65r 3x4x233x4x23
    2|y|3y242|y|3y24

    73.

    11|m11|2m11|m11|2m 3m25m243m25m24 2n5n352n5n35

    75.

    7|m3n5|3mn7|m3n5|3mn 2x2y26y32x2y26y3 2|xy|2x42|xy|2x4

    77.

    8|qr3|3qr8|qr3|3qr 3m3n32n33m3n32n3 3a2b2a43a2b2a4

    79.

    −643−643 not real

    81.

    −2−2 not real

    83.

    5+235+23 5656

    85.

    1+351+35 1+101+10

    87.

    3434 2323 1313

    89.

    5353 3535 1414

    91.

    x2x2 p3p3 |q||q|

    93.

    1y21y2 u2u2 |v3||v3|

    95.

    4 | x 3 | 6 x 11 4 | x 3 | 6 x 11

    97.

    5 m 2 3 m 4 5 m 2 3 m 4

    99.

    7 r 2 2 r 10 7 r 2 2 r 10

    101.

    2 | q 3 | 7 15 2 | q 3 | 7 15

    103.

    5r43rs45r43rs4 3a22a23b3a22a23b
    2|c|4c4|d|2|c|4c4|d|

    105.

    2|p3|7p|q|2|p3|7p|q| 3s23s23t3s23s23t
    2|p3|4p34|q3|2|p3|4p34|q3|

    107.

    4|xy|34|xy|3 y2x32y2x32 |ab|a42|ab|a42

    109.

    12|pq|12|pq| 2cdd2352cdd235
    |mn|2|mn|2

    111.

    3p4p|q|3p4p|q| 224224
    2x2x52x2x5

    113.

    5|m3|5|m3| 553553
    3|y|3y243|y|3y24

    115.

    Answers will vary.

    117.

    Answers will vary.

    Section 8.3 Exercises

    119.

    xx y3y3 z4z4

    121.

    u5u5 v9v9 w20w20

    123.

    x17x17 y19y19 f15f15

    125.

    (7c)13(7c)13 (12d)17(12d)17
    2(6b)142(6b)14

    127.

    (21p)12(21p)12 (8q)14(8q)14
    4(36r)164(36r)16

    129.

    9 5 8

    131.

    2 4 5

    133.

    −6−6 −6−6 1616

    135.

    not real −3−3 1313

    137.

    not real −6−6 1616

    139.

    not real −10−10 110110

    141.

    m52m52 (3y)73(3y)73 (4x5y)35(4x5y)35

    143.

    u25u25 (6x)53(6x)53 (18a5b)74(18a5b)74

    145.

    32,768 17291729 9

    147.

    4 1919 not real

    149.

    −27−27 127127 not real

    151.

    c78c78 p9p9 1r1r

    153.

    y54y54 x8x8 1m1m

    155.

    81q281q2 a12ba12b

    157.

    8u148u14 8p12q348p12q34

    159.

    r72r72 6st6st

    161.

    c2c2 2x3y2x3y

    163.

    Answers will vary.

    Section 8.4 Exercises

    165.

    3232 7m37m3 6m46m4

    167.

    9595 12a312a3 62z462z4

    169.

    42a42a 0

    171.

    3c3c 4pq34pq3

    173.

    −23−23 −253−253 324324

    175.

    7373 723723 354354

    177.

    a22aa22a 0

    179.

    2c35c2c35c 14r22r2414r22r24

    181.

    4 y 2 4 y 2

    183.

    −186−186 −6493−6493

    185.

    −302−302 624624

    187.

    72z2372z23 45x22345x223

    189.

    −42z52z−42z52z −8y6y4−8y6y4

    191.

    14+5714+57 463+343463+343

    193.

    4431144311 324+544324+544

    195.

    60 + 2 3 60 + 2 3

    197.

    30+18230+182 x232x33x232x33

    199.

    −55+1310−55+1310
    2x23+8x3+62x23+8x3+6

    201.

    23 + 3 30 23 + 3 30

    203.

    −439 2 77 −439 2 77

    205.

    14+6514+65 7920379203

    207.

    8718687186
    163+607163+607

    209.

    14

    211.

    −227 −227

    213.

    19 19

    215.

    9 x 2 3 4 9 x 2 3 4

    217.

    5 3 5 3

    219.

    9 2 9 2

    221.

    5 4 5 4

    223.

    10c239c33 10 c 2 3 9 c 3 3

    225.

    2 3 2 3

    227.

    17 q 2 17 q 2

    229.

    3 7 3 7

    231.

    −42 9 3 −42 9 3

    233.

    29

    235.

    29 7 17 29 7 17

    237.

    54 36 2 54 36 2

    239.

    6 + 3 2 3 6 + 3 2 3

    241.

    Answers will vary.

    243.

    Answers will vary.

    Section 8.5 Exercises

    245.

    4343 4343

    247.

    10m2710m27 3y3y

    249.

    56r256r2 2x32x3

    251.

    6pq26pq2 2a2b2a2b

    253.

    8m43n48m43n4 2x23y22x23y2

    255.

    2 x 2 7 y 2 x 2 7 y

    257.

    2 a b 2 a 3 2 a b 2 a 3

    259.

    563563 239239 25xx25xx

    261.

    677677 2101521015 43pp43pp

    263.

    25352535 45364536 26a233a26a233a

    265.

    121311121311 28362836 9x3x9x3x

    267.

    3434734347 40444044 24x24x24x24x

    269.

    943943 50445044 23a34a23a34a

    271.

    −2 ( 1 + 5 ) −2 ( 1 + 5 )

    273.

    3 ( 3 + 7 ) 3 ( 3 + 7 )

    275.

    3 ( m + 5 ) m 5 3 ( m + 5 ) m 5

    277.

    2 ( x + 6 ) x 6 2 ( x + 6 ) x 6

    279.

    ( r + 5 ) r 5 2 ( r + 5 ) r 5 2

    281.

    ( x + 2 2 ) x 8 2 ( x + 2 2 ) x 8 2

    283.

    Answers will vary.

    285.

    Answers will vary.

    Section 8.6 Exercises

    287.

    x = 14 x = 14

    289.

    no solution

    291.

    x = −4 x = −4

    293.

    m = 14 m = 14

    295.

    v = 17 v = 17

    297.

    m = 7 2 m = 7 2

    299.

    no solution

    301.

    u = 3 , u = 4 u = 3 , u = 4

    303.

    r = 1 , r = 2 r = 1 , r = 2

    305.

    x = 10 x = 10

    307.

    x = −8 x = −8

    309.

    x = 8 x = 8

    311.

    x = −4 x = −4

    313.

    x = 7 x = 7

    315.

    x = 3 x = 3

    317.

    z = 21 z = 21

    319.

    x = 42 x = 42

    321.

    r = 3 r = 3

    323.

    u = 3 u = 3

    325.

    r = −2 r = −2

    327.

    x = 1 x = 1

    329.

    x = −8 , x = 2 x = −8 , x = 2

    331.

    a = 0 a = 0

    333.

    u = 9 4 u = 9 4

    335.

    a = 4 a = 4

    337.

    x = 0 x = 4 x = 0 x = 4

    339.

    x = 1 x = 5 x = 1 x = 5

    341.

    x = 9 x = 9

    343.

    8.78.7 feet

    345.

    4.74.7 seconds

    347.

    72 feet

    349.

    Answers will vary.

    Section 8.7 Exercises

    351.

    f(5)=4f(5)=4 no value at x=0x=0

    353.

    g(4)=5g(4)=5 g(8)=7g(8)=7

    355.

    F(1)=1F(1)=1 F(−11)=5F(−11)=5

    357.

    G(5)=26G(5)=26 G(2)=3G(2)=3

    359.

    g(6)=2g(6)=2 g(−2)=−2g(−2)=−2

    361.

    h(−2)=0h(−2)=0 h(6)=243h(6)=243

    363.

    f(0)=0f(0)=0 f(2)=2f(2)=2

    365.

    g(1)=0g(1)=0 g(−3)=2g(−3)=2

    367.

    [ 1 3 , ) [ 1 3 , )

    369.

    ( , 2 3 ] ( , 2 3 ]

    371.

    ( 2 , ) ( 2 , )

    373.

    ( , −3 ] ( 2 , ) ( , −3 ] ( 2 , )

    375.

    ( , ) ( , )

    377.

    ( , ) ( , )

    379.

    [ 3 8 , ) [ 3 8 , )

    381.

    ( , ) ( , )

    383.

    domain: [−1,)[−1,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 1 to 7. The y-axis runs from negative 2 to 10. The function has a starting point at (negative 1, 0) and goes through the points (0, 1) and (3, 2).


    [0,)[0,)

    385.

    domain: [−4,)[−4,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 2 to 6. The function has a starting point at (negative 4, 0) and goes through the points (negative 3, 1) and (0, 2).


    [0,)[0,)

    387.

    domain: [0,)[0,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from 0 to 8. The y-axis runs from 0 to 8. The function has a starting point at (0, 2) and goes through the points (1, 3) and (4, 4).


    [2,)[2,)

    389.

    domain: [0,)[0,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from 0 to 8. The y-axis runs from 0 to 8. The function has a starting point at (0, 0) and goes through the points (1, 2) and (4, 4).


    [0,)[0,)

    391.

    domain: (,3](,3]

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 6 to 4. The y-axis runs from 0 to 8. The function has a starting point at (3, 0) and goes through the points (2, 1), (negative 1, 2), and (negative 6, 3).


    [0,)[0,)

    393.

    domain: [0,)[0,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from 0 to 8. The y-axis runs from negative 8 to 0. The function has a starting point at (0, 0) and goes through the points (1, negative 1) and (4, negative 2).


    (,0](,0]

    395.

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 4 to 4. The function has a center point at (negative 1, 0) and goes through the points (negative 2, negative 1) and (0, 1).


    (,)(,)

    397.

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 4 to 4. The function has a center point at (negative 4, 0) and goes through the points (negative 3, negative 1) and (negative 1, 1).


    (,)(,)

    399.

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 2 to 6. The function has a center point at (0, 3) and goes through the points (negative 1, 2) and (1, 4).


    (,)(,)

    401.

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 4 to 4. The function has a center point at (0, 0) and goes through the points (1, 1) and (negative 1, negative 1).


    (,)(,)

    403.

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 4 to 4. The function has a center point at (0, 0) and goes through the points (1, 2) and (negative 1, negative 2).


    (,)(,)

    405.

    Answers will vary.

    407.

    Answers will vary.

    Section 8.8 Exercises

    409.

    4i4i 11i11i 22i22i

    411.

    10i10i 13i13i 35i35i

    413.

    9 3 i 9 3 i

    415.

    8 2 i 8 2 i

    417.

    8 + 7 i 8 + 7 i

    419.

    14 + 2 i 14 + 2 i

    421.

    −2 + 2 i −2 + 2 i

    423.

    8 + 5 i 8 + 5 i

    425.

    7 13 i 7 13 i

    427.

    25 2 2 i 25 2 2 i

    429.

    12 + 20 i 12 + 20 i

    431.

    −12 + 18 i −12 + 18 i

    433.

    −38 + + 9 i −38 + + 9 i

    435.

    27 + 15 i 27 + 15 i

    437.

    −7 + 24 i −7 + 24 i

    439.

    −5 + 12 i −5 + 12 i

    441.

    −30 −30

    443.

    −30 −30

    445.

    −44 4 i 3 −44 4 i 3

    447.

    −20 2 2 i −20 2 2 i

    449.

    5

    451.

    53

    453.

    50

    455.

    85

    457.

    i

    459.

    2 25 + 11 25 i 2 25 + 11 25 i

    461.

    6 13 + 9 13 i 6 13 + 9 13 i

    463.

    12 13 8 13 i 12 13 8 13 i

    465.

    4 3 1 3 i 4 3 1 3 i

    467.

    3 4 + 1 2 i 3 4 + 1 2 i

    469.

    i

    471.

    −1 −1

    473.

    1

    475.

    i

    477.

    Answers will vary.

    479.

    Answers will vary.

    Review Exercises

    481.

    15 −4−4

    483.

    2 3 3

    485.

    8<68<98<68<9
    4<843<54<843<5

    487.

    a bb

    489.

    m2m2 n4n4

    491.

    6a26a2 2b42b4

    493.

    5 5 5 5

    495.

    553553 226226

    497.

    4|s7|5s4|s7|5s 2a3a252a3a25
    2|b|2b62|b|2b6

    499.

    −2−2 not real

    501.

    6767 2323 1212

    503.

    5 m 2 3 m 4 5 m 2 3 m 4

    505.

    12|pq|12|pq| 2cd2d2552cd2d255
    |mn|2|mn|2

    507.

    rr s3s3 t4t4

    509.

    5 3 2

    511.

    −2−2 1313 −5−5

    513.

    125 127127 16

    515.

    6363 b9b9 1w1w

    517.

    4242 9p39p3 2x32x3

    519.

    7373 723723 354354

    521.

    37 y 3 37 y 3

    523.

    126x2x126x2x 48a5a2348a5a23

    525.

    7122771227
    x238x3+15x238x3+15

    527.

    27+81127+811 2912529125

    529.

    9 x 2 3 4 9 x 2 3 4

    531.

    8m43n48m43n4 2x23y22x23y2

    533.

    121311121311 28362836 9x3x9x3x

    535.

    7 ( 2 + 6 ) 2 7 ( 2 + 6 ) 2

    537.

    ( x + 2 2 ) x 8 2 ( x + 2 2 ) x 8 2

    539.

    no solution

    541.

    u = 3 , u = 4 u = 3 , u = 4

    543.

    x = −4 x = −4

    545.

    r = 3 r = 3

    547.

    x = −8 , x = 2 x = −8 , x = 2

    549.

    x = 3 x = 3

    551.

    64.864.8 feet

    553.

    G(5)=26G(5)=26 G(2)=3G(2)=3

    555.

    g(1)=0g(1)=0 g(−3)=2g(−3)=2

    557.

    ( 2 , ) ( 2 , )

    559.

    , 10 7 , 10 7

    561.

    domain: [0,)[0,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from 0 to 8. The y-axis runs from 0 to 8. The function has a starting point at (0, 0) and goes through the points (1, 2) and (4, 4).


    range: [0,)[0,)

    563.

    domain: (,)(,)

    The figure shows a cube root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 4 to 4. The y-axis runs from negative 2 to 6. The function has a center point at (0, 3) and goes through the points (negative 1, 2) and (1, 4).


    range: (,)(,)

    565.

    8 2 i 8 2 i

    567.

    8 + 5 i 8 + 5 i

    569.

    23 + 14 i 23 + 14 i

    571.

    −8 −8

    573.

    −5 + 12 i −5 + 12 i

    575.

    2 25 + 11 25 i 2 25 + 11 25 i

    577.

    1

    Practice Test

    579.

    5 x 3 5 x 3

    581.

    2 x 2 y 9 x 2 y 3 2 x 2 y 9 x 2 y 3

    583.

    1414 −343−343

    585.

    x 7 4 x 7 4

    587.

    x 2 3 x x 2 3 x

    589.

    36 x 4 2 36 x 4 2

    591.

    2 7 3 2 7 3

    593.

    7 x 2 x y 3 y 4 7 x 2 x y 3 y 4

    595.

    3 ( 2 3 ) 3 ( 2 3 )

    597.

    −12 + 8 i −12 + 8 i

    599.

    1 1

    601.

    x = 4 x = 4

    603.

    domain: [−2,)[−2,)

    The figure shows a square root function graph on the x y-coordinate plane. The x-axis of the plane runs from negative 2 to 6. The y-axis runs from 0 to 8. The function has a starting point at (negative 2, 0) and goes through the points (negative 1, 1) and (2, 2).


    range: [0,)[0,)


    13.1.8: Chapter 8 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?