Skip to main content
Mathematics LibreTexts

13.1.10: Chapter 10

  • Page ID
    117745
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Be Prepared

    10.1

    f4=5f4=5; gf4=32gf4=32

    10.2

    x = 2 3 y + 4 x = 2 3 y + 4

    10.3

    x x

    10.4

    x x

    10.5

    11; 11

    10.6

    1212; 33

    10.7

    x = 9 , x = 9 x = 9 , x = 9

    10.8

    1 9 1 9

    10.9

    x = 7 x = 7

    10.10

    11; aa

    10.11

    x 2 y 1 3 x 2 y 1 3

    10.12

    2.565 2.565

    10.13

    x = 4 , x = 4 x = 4 , x = 4

    10.14

    x = 2 , x = 3 x = 2 , x = 3

    10.15

    x = 5 , x = 1 x = 5 , x = 1

    Try It

    10.1

    15x+115x+1 15x915x9
    15x27x215x27x2

    10.2

    24x2324x23 24x2324x23
    24x238x+1524x238x+15

    10.3

    –8 5 40

    10.4

    65 10 5

    10.5

    One-to-one function
    Function; not one-to-one

    10.6

    Not a function
    Function; not one-to-one

    10.7

    Not a function One-to-one function

    10.8

    Function; not one-to-one One-to-one function

    10.9

    Inverse function: {(4,0),(7,1),(10,2),(13,3)}.{(4,0),(7,1),(10,2),(13,3)}. Domain: {4,7,10,13}.{4,7,10,13}. Range: {0,1,2,3}.{0,1,2,3}.

    10.10

    Inverse function: {(4,−1),(1,−2),(0,−3),(2,−4)}.{(4,−1),(1,−2),(0,−3),(2,−4)}. Domain: {0,1,2,4}.{0,1,2,4}. Range: {−4,−3,−2,−1}.{−4,−3,−2,−1}.

    10.11
    This figure shows a line from (negative 4, negative 3) to (negative 2, negative 2) then to (negative 1, 0) then to (2, 1) and then to (3, 4).
    10.12
    Graph extends from negative 4 to 4 on both axes. Points plotted are (negative 3, 4), (0, 3), (1, 2), and (4, 1). Line segments connect points.
    10.13

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses.

    10.14

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses.

    10.15

    f −1 ( x ) = x + 3 5 f −1 ( x ) = x + 3 5

    10.16

    f −1 ( x ) = x 5 8 f −1 ( x ) = x 5 8

    10.17

    f −1 ( x ) = x 5 + 2 3 f −1 ( x ) = x 5 + 2 3

    10.18

    f −1 ( x ) = x 4 + 7 6 f −1 ( x ) = x 4 + 7 6

    10.19 This figure shows a curve that slopes swiftly upward from just above (negative 3, 0) through (0, 1) up to (1, 4).
    10.20 This figure shows a curve that slopes swiftly upward from just above (negative 3, 0) through (0, 1) up to (1, 5).
    10.21 This figure shows a curve that passes through (negative 1, 4), (0, 1) to a point just above (3, 0).
    10.22 This figure shows a curve that passes through (negative 1, 5), (0, 1) to a point just above (3, 0).
    10.23 This figure shows the graphs of two functions. The first function f of x equals 2 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 2), (0, 1) and (1, 2). The second function g of x equals 2 to the x minus 1 power is marked in red and passes through the points (0, 1 over 2), (1, 1), and (2, 2).
    10.24 This figure shows the graphs of two functions. The first function f of x equals 3 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 3), (0, 1) and (1, 3). The second function g of x equals 3 to the x plus 1 power is marked in red and passes through the points (negative 2, 1 over 3), (negative 1, 1), and (0, 3).
    10.25 This figure shows the graphs of two functions. The first function f of x equals 3 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 3), (0, 1) and (1, 3). The second function g of x equals 3 to the x power plus 2 is marked in red and passes through the points (negative 1, 7 over 3), (0, 3) and (1, 5).
    10.26 This figure shows the graphs of two functions. The first function f of x equals 4 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 4), (0, 1) and (1, 4). The second function g of x equals 4 to the x power minus 2 is marked in red and passes through the points (negative 1, negative 7 over 4), (0, negative 1), and (1, 2).
    10.27

    x = 2 x = 2

    10.28

    x = 4 x = 4

    10.29

    x = −1 , x = 2 x = −1 , x = 2

    10.30

    x = −2 , x = 3 x = −2 , x = 3

    10.31

    $22,332.96$22,332.96
    $22,362.49$22,362.49 $22,377.37$22,377.37

    10.32

    $21,071.81 $21,137.04
    $21,170.00

    10.33

    She will find 166 bacteria.

    10.34

    They will find 1,102 viruses.

    10.35

    log39=2log39=2
    log77=12log77=12 log13127=xlog13127=x

    10.36

    log464=3log464=3
    log443=13log443=13 log12132=xlog12132=x

    10.37

    64=4364=43
    1=x01=x0 1100=10−21100=10−2

    10.38

    27=3327=33 1=301=30
    110=10−1110=10−1

    10.39


    x=8x=8 x=125x=125 x=2x=2

    10.40



    x=9x=9 x=243x=243 x=3x=3

    10.41


    2 1212 −5−5

    10.42

    2 1313 −2−2

    10.43 This figure shows the logarithmic curve going through the points (1 over 3, negative 1), (1, 0), and (3, 1).
    10.44 This figure shows the logarithmic curve going through the points (1 over 5, negative 1), (1, 0), and (5, 1).
    10.45 This figure shows the logarithmic curve going through the points (1 over 2, 1), (1, 0), and (2, negative 1).
    10.46 This figure shows the logarithmic curve going through the points (1 over 4, 1), (1, 0), and (4, negative 1).
    10.47



    a=11a=11
    x=e7x=e7

    10.48



    a=4a=4
    x=e9x=e9

    10.49



    x=13x=13
    x=2x=2

    10.50



    x=6x=6
    x=1x=1

    10.51

    The quiet dishwashers have a decibel level of 50 dB.

    10.52

    The decibel level of heavy traffic is 90 dB.

    10.53

    The intensity of the 1906 earthquake was about 8 times the intensity of the 1989 earthquake.

    10.54

    The intensity of the earthquake in Chile was about 1,259 times the intensity of the earthquake in Los Angeles.

    10.55

    0 1

    10.56

    0 1

    10.57

    15 4

    10.58

    8 15

    10.59

    1+log3x1+log3x
    3+log2x+log2y3+log2x+log2y

    10.60

    1+log9x1+log9x
    3+log3x+log3y3+log3x+log3y

    10.61

    log431log431 logx3logx3

    10.62

    log252log252 1logy1logy

    10.63

    4log754log75 100·logx100·logx

    10.64

    7log237log23 20·logx20·logx

    10.65

    log 2 5 + 4 log 2 x + 2 log 2 y log 2 5 + 4 log 2 x + 2 log 2 y

    10.66

    log 3 7 + 5 log 3 x + 3 log 3 y log 3 7 + 5 log 3 x + 3 log 3 y

    10.67

    1 5 ( 4 log 4 x 1 2 3 log 4 y 2 log 4 z ) 1 5 ( 4 log 4 x 1 2 3 log 4 y 2 log 4 z )

    10.68

    1 3 ( 2 log 3 x log 3 5 log 3 y log 3 z ) 1 3 ( 2 log 3 x log 3 5 log 3 y log 3 z )

    10.69

    log 2 5 x y log 2 5 x y

    10.70

    log 3 6 x y log 3 6 x y

    10.71

    log 2 x 3 ( x 1 ) 2 log 2 x 3 ( x 1 ) 2

    10.72

    log x 2 ( x + 1 ) 2 log x 2 ( x + 1 ) 2

    10.73

    3.402 3.402

    10.74

    2.379 2.379

    10.75

    x = 6 x = 6

    10.76

    x = 4 x = 4

    10.77

    x = 4 x = 4

    10.78

    x = 8 x = 8

    10.79

    x = 3 x = 3

    10.80

    x = 8 x = 8

    10.81

    x = log 43 log 7 1.933 x = log 43 log 7 1.933

    10.82

    x = log 98 log 8 2.205 x = log 98 log 8 2.205

    10.83

    x = ln 9 + 2 4.197 x = ln 9 + 2 4.197

    10.84

    x = ln 5 2 0.805 x = ln 5 2 0.805

    10.85

    r 9.3 % r 9.3 %

    10.86

    r 11.9 % r 11.9 %

    10.87

    There will be 62,500 bacteria.

    10.88

    There will be 47,700 bacteria.

    10.89

    There will be 6.44 mg left.

    10.90

    There will be 31.5 mg left.

    Section 10.1 Exercises

    1.

    8x+238x+23 8x+118x+11
    8x2+26x+158x2+26x+15

    3.

    24x+124x+1 24x1924x19
    24x214x524x214x5

    5.

    6x29x6x29x 18x29x18x29x
    6x39x26x39x2

    7.

    2x2+32x2+3 4x24x+34x24x+3
    2x3x2+4x22x3x2+4x2

    9.

    245 104 53

    11.

    250 14 77

    13.

    Function; not one-to-one

    15.

    One-to-one function

    17.

    Not a function Function; not one-to-one

    19.

    One-to-one function
    Function; not one-to-one

    21.

    Inverse function: {(1,2),(2,4),(3,6),(4,8)}.{(1,2),(2,4),(3,6),(4,8)}. Domain: {1,2,3,4}.{1,2,3,4}. Range: {2,4,6,8}.{2,4,6,8}.

    23.

    Inverse function: {(−2,0),(3,1),(7,2),(12,3)}.{(−2,0),(3,1),(7,2),(12,3)}. Domain: {−2,3,7,12}.{−2,3,7,12}. Range: {0,1,2,3}.{0,1,2,3}.

    25.

    Inverse function: {(−3,2),(−1,−1),(1,0),(3,1)}.{(−3,2),(−1,−1),(1,0),(3,1)}. Domain: {−3,1,1,3}.{−3,1,1,3}. Range: {−2,−1,0,1}.{−2,−1,0,1}.

    27.
    This figure shows a series of line segments from (negative 3, negative 4) to (0, negative 3) then to (2, negative 1), and then to (4, 3).
    29.
    This figure shows a series of line segments from (negative 1, 4) to (2, 3) then to (3, 0), and then to (4, negative 4).
    31.

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses.

    33.

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses.

    35.

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses.

    37.

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses (for nonnegative x).x).

    39.

    f −1 ( x ) = x + 12 f −1 ( x ) = x + 12

    41.

    f −1 ( x ) = x 9 f −1 ( x ) = x 9

    43.

    f −1 ( x ) = 6 x f −1 ( x ) = 6 x

    45.

    f −1 ( x ) = x + 7 6 f −1 ( x ) = x + 7 6

    47.

    f −1 ( x ) = x 5 −2 f −1 ( x ) = x 5 −2

    49.

    f −1 ( x ) = x 6 f −1 ( x ) = x 6

    51.

    f −1 ( x ) = x + 4 3 f −1 ( x ) = x + 4 3

    53.

    f −1 ( x ) = 1 x 2 f −1 ( x ) = 1 x 2

    55.

    f−1(x)=x2+2f−1(x)=x2+2, x0x0

    57.

    f −1 ( x ) = x 3 + 3 f −1 ( x ) = x 3 + 3

    59.

    f−1(x)=x4+59f−1(x)=x4+59, x0x0

    61.

    f −1 ( x ) = x 5 5 −3 f −1 ( x ) = x 5 5 −3

    63.

    Answers will vary.

    Section 10.2 Exercises

    65.
    This figure shows a curve that passes through (negative 1, 1 over 2) through (0, 1) to (1, 2).
    67.
    This figure shows a curve that passes through (negative 1, 1 over 6) through (0, 1) to (1, 6).
    69.
    This figure shows a curve that passes through (negative 1, 2 over 3) through (0, 1) to (1, 3 over 2).
    71.
    This figure shows a curve that passes through (negative 1, 2) through (0, 1) to (1, 1 over 2).
    73.
    This figure shows a curve that passes through (negative1, 6) through (0, 1) to (1, 1 over 6).
    75.
    This figure shows a curve that passes through (negative 1, 5 over 2) through (0, 1) to (1, 2 over 5).
    77.
    This figure shows two functions. The first function f of x equals 4 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 4), (0, 1) and (1, 4). The second function g of x equals 4 to the x minus 1 power is marked in red and passes through the points (0, 1 over 4), (1, 1) and (2, 4).
    79.
    This figure shows two functions. The first function f of x equals 2 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 2), (0, 1) and (1, 2). The second function g of x equals 2 to the x minus 2 power is marked in red and passes through the points (0, 1 over 4), (1, 1 over 2), and (2, 1).
    81.
    This figure shows two functions. The first function f of x equals 3 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 3), (0, 1), and (1, 3). The second function g of x equals 3 to the x power plus 2 is marked in red and passes through the points (negative 2, 1), (negative 1, 3), and (0, 5).
    83.
    This figure shows two functions. The first function f of x equals 2 to the x power is marked in blue and corresponds to a curve that passes through the points (negative 1, 1 over 2), (0, 1), and (1, 2). The second function g of x equals 2 to the x power plus 1 is marked in red and passes through the points (negative 1, 1), (0, 2), and (1, 4).
    85.
    This figure shows an exponential curve that passes through (negative 3, 1 over 3), (negative 2, 1), and (0, 9).
    87.
    This figure shows an exponential that passes through (negative 1, 7 over 2), (0, 4), and (1, 5).
    89.
    This figure shows an exponential that passes through (2, 4), (3, 2), and (4, 1).
    91.
    This figure shows an exponential that passes through (1, 1 plus 1 over e), (0, 2), and (1, e).
    93.
    This figure shows an exponential that passes through (negative 1, negative 1 over 2), (0, negative 1), and (1, 2).
    95.

    x = 4 x = 4

    97.

    x = −1 x = −1

    99.

    x = −1 , x = 1 x = −1 , x = 1

    101.

    x = 1 x = 1

    103.

    x = −1 x = −1

    105.

    x = 2 x = 2

    107.

    x = −1 , x = 2 x = −1 , x = 2

    109.

    111.

    113.

    115.

    $7,387.28$7,387.28 $7,434.57$7,434.57 $7,459.12$7,459.12

    117.

    $ 36,945.28 $ 36,945.28

    119.

    162 bacteria

    121.

    288,929,825

    123.

    Answers will vary.

    125.

    Answers will vary.

    Section 10.3 Exercises

    127.

    log 2 32 = 5 log 2 32 = 5

    129.

    log 5 125 = 3 log 5 125 = 3

    131.

    log 1 100 = −2 log 1 100 = −2

    133.

    log x 6 3 = 1 3 log x 6 3 = 1 3

    135.

    log 17 17 5 = x log 17 17 5 = x

    137.

    log 1 3 1 81 = 4 log 1 3 1 81 = 4

    139.

    log 4 1 64 = −3 log 4 1 64 = −3

    141.

    ln x = 3 ln x = 3

    143.

    64 = 2 6 64 = 2 6

    145.

    32 = x 5 32 = x 5

    147.

    1 = 7 0 1 = 7 0

    149.

    9 = 9 1 9 = 9 1

    151.

    1,000 = 10 3 1,000 = 10 3

    153.

    43 = e x 43 = e x

    155.

    x = 11 x = 11

    157.

    x = 4 x = 4

    159.

    x = 125 x = 125

    161.

    x = 1 243 x = 1 243

    163.

    x = 2 x = 2

    165.

    x = −2 x = −2

    167.

    2

    169.

    0

    171.

    1 3 1 3

    173.

    −2 −2

    175.

    −3 −3

    177.

    −2 −2

    179.
    This figure shows the logarithmic curve going through the points (1 over 4, negative 1), (1, 0), and (4, 1).
    181.
    This figure shows that the logarithmic curve going through the points (1 over 7, negative 1), (1, 0), and (7, 1).
    183.
    This figure shows the logarithmic curve going through the points (2 over 5, negative 1), (1, 0), and (2.5, 1).
    185.
    This figure shows the logarithmic curve going through the points (1 over 5, 1), (1, 0), and (5, negative 1).
    187.
    This figure shows the logarithmic curve going through the points (3 over 5, 1), (1, 0), and (5 over 3, negative 1).
    189.

    a = 9 a = 9

    191.

    a = 3 a = 3

    193.

    a = 2 3 3 a = 2 3 3

    195.

    x = e 4 x = e 4

    197.

    x = 5 x = 5

    199.

    x = 17 x = 17

    201.

    x = 6 x = 6

    203.

    x = 3 x = 3

    205.

    x = −5 5 , x = 5 5 x = −5 5 , x = 5 5

    207.

    x = −5 , x = 5 x = −5 , x = 5

    209.

    A whisper has a decibel level of 20 dB.

    211.

    The sound of a garbage disposal has a decibel level of 100 dB.

    213.

    The intensity of the 1994 Northridge earthquake in the Los Angeles area was about 40 times the intensity of the 2014 earthquake.

    215.

    Answers will vary.

    217.

    Answers will vary.

    Section 10.4 Exercises

    219.

    0 1

    221.

    10 10

    223.

    15 −4−4

    225.

    33 −1−1

    227.

    3 7

    229.

    log 5 8 + log 5 y log 5 8 + log 5 y

    231.

    4 + log 3 x + log 3 y 4 + log 3 x + log 3 y

    233.

    3 + log y 3 + log y

    235.

    log 6 5 1 log 6 5 1

    237.

    3 log 5 x 3 log 5 x

    239.

    4 log y 4 log y

    241.

    4 ln 16 4 ln 16

    243.

    5 log 2 x 5 log 2 x

    245.

    −3 log x −3 log x

    247.

    1 3 log 5 x 1 3 log 5 x

    249.

    4 3 ln x 4 3 ln x

    251.

    log 2 3 + 5 log 2 x + 3 log 2 y log 2 3 + 5 log 2 x + 3 log 2 y

    253.

    1 4 log 5 21 + 3 log 5 y 1 4 log 5 21 + 3 log 5 y

    255.

    log 5 4 + log 5 a + 3 log 5 b log 5 4 + log 5 a + 3 log 5 b
    + 4 log 5 c 2 log 5 d + 4 log 5 c 2 log 5 d

    257.

    2 3 log 3 x 3 4 log 3 y 2 3 log 3 x 3 4 log 3 y

    259.

    1 2 log 3 ( 3 x + 2 y 2 ) log 3 5 2 log 3 z 1 2 log 3 ( 3 x + 2 y 2 ) log 3 5 2 log 3 z

    261.

    1 3 ( log 5 3 + 2 log 5 x log 5 4 1 3 ( log 5 3 + 2 log 5 x log 5 4
    3 log 5 y log 5 z ) 3 log 5 y log 5 z )

    263.

    2

    265.

    2

    267.

    log 2 5 x 1 log 2 5 x 1

    269.

    log 5 2 x y log 5 2 x y

    271.

    log 3 x 6 y 9 log 3 x 6 y 9

    273.

    0

    275.

    ln x 3 y 4 z 2 ln x 3 y 4 z 2

    277.

    log ( 2 x + 3 ) 2 · x + 1 log ( 2 x + 3 ) 2 · x + 1

    279.

    2.379 2.379

    281.

    1.674 1.674

    283.

    5.542 5.542

    285.

    Answers will vary.

    287.

    Answers will vary.

    Section 10.5 Exercises

    289.

    x = 7 x = 7

    291.

    x = 4 x = 4

    293.

    x=1,x=1, x=3x=3

    295.

    x = 8 x = 8

    297.

    x = 3 x = 3

    299.

    x = 20 x = 20

    301.

    x = 3 x = 3

    303.

    x = 6 x = 6

    305.

    x = 5 3 x = 5 3

    307.

    x = log 74 log 2 6.209 x = log 74 log 2 6.209

    309.

    x = log 112 log 4 3.404 x = log 112 log 4 3.404

    311.

    x = ln 8 2.079 x = ln 8 2.079

    313.

    x = log 8 log 1 3 1.893 x = log 8 log 1 3 1.893

    315.

    x = ln 3 2 0.901 x = ln 3 2 0.901

    317.

    x = ln 16 3 0.924 x = ln 16 3 0.924

    319.

    x = ln 6 1.792 x = ln 6 1.792

    321.

    x = ln 8 + 1 3.079 x = ln 8 + 1 3.079

    323.

    x = 5 x = 5

    325.

    x = −4 , x = 5 x = −4 , x = 5

    327.

    a = 3 a = 3

    329.

    x = e 9 x = e 9

    331.

    x = 7 x = 7

    333.

    x = 3 x = 3

    335.

    x = 2 x = 2

    337.

    x = 6 x = 6

    339.

    x = 5 x = 5

    341.

    x = log 10 log 1 2 3.322 x = log 10 log 1 2 3.322

    343.

    x = ln 7 5 3.054 x = ln 7 5 3.054

    345.

    6.9 % 6.9 %

    347.

    13.9 years

    349.

    122,070 bacteria

    351.

    8 times as large as the original population

    353.

    0.03 ml

    355.

    Answers will vary.

    Review Exercises

    357.

    4x2+12x4x2+12x 16x2+12x16x2+12x 4x3+12x24x3+12x2

    359.

    −123−123 356 41

    361.

    Function; not one-to-one

    363.

    Function; not one-to-one Not a function

    365.

    Inverse function: {(10,−3),(5,−2),(2,−1),(1,0)}.{(10,−3),(5,−2),(2,−1),(1,0)}. Domain: {1,2,5,10}.{1,2,5,10}. Range: {−3,−2,−1,0}.{−3,−2,−1,0}.

    367.

    g(f(x))=x,g(f(x))=x, and f(g(x))=x,f(g(x))=x, so they are inverses.

    369.

    f −1 ( x ) = x + 11 6 f −1 ( x ) = x + 11 6

    371.

    f −1 ( x ) = 1 x 5 f −1 ( x ) = 1 x 5

    373.
    This figure shows an exponential line passing through the points (negative 1, 1 over 4), (0, 1), and (1, 4).
    375.
    This figure shows an exponential line passing through the points (negative 1, 4 over 3), (0, 1), and (1, 3 over 4).
    377.
    This figure shows an exponential line passing through the points (negative 1, negative 59 over 23), (0, negative 2), and (1, negative7 over 10).
    379.
    This figure shows an exponential line passing through the points (negative 1, negative 1 over e), (0, negative 1), and (1, negative e).
    381.

    x = −2 , x = 2 x = −2 , x = 2

    383.

    x = −1 x = −1

    385.

    x = −3 , x = 5 x = −3 , x = 5

    387.

    $ 163,323.40 $ 163,323.40

    389.

    330,259,000

    391.

    log 1 1,000 = −3 log 1 1,000 = −3

    393.

    ln 16 = y ln 16 = y

    395.

    100000 = 10 5 100000 = 10 5

    397.

    x = 5 x = 5

    399.

    x = 4 x = 4

    401.

    0

    403.
    This figure shows a logarithmic line passing through the points (1 over 5, negative 1), (1, 0), and (5, 1).
    405.
    This figure shows a logarithmic line passing through the points (4 over 5, 1), (1, 0), and (5 over 4, negative 1).
    407.

    x = e −3 x = e −3

    409.

    x = 8 x = 8

    411.

    90 dB

    413.

    13 −9−9

    415.

    8 5

    417.

    4 + log m 4 + log m

    419.

    5 ln 2 5 ln 2

    421.

    1 7 log 4 z 1 7 log 4 z

    423.

    log 5 8 + 2 log 5 a + 6 log 5 b log 5 8 + 2 log 5 a + 6 log 5 b
    + log 5 c 3 log 5 d + log 5 c 3 log 5 d

    425.

    1 3 ( log 6 7 + 2 log 6 x 1 3 log 6 y 1 3 ( log 6 7 + 2 log 6 x 1 3 log 6 y
    5 log 6 z ) 5 log 6 z )

    427.

    log 3 x 3 y 7 log 3 x 3 y 7

    429.

    log y 4 ( y 3 ) 2 log y 4 ( y 3 ) 2

    431.

    5.047

    433.

    x = 4 x = 4

    435.

    x = 3 x = 3

    437.

    x = log 101 log 2 6.658 x = log 101 log 2 6.658

    439.

    x = log 7 log 1 3 1.771 x = log 7 log 1 3 1.771

    441.

    x = ln 15 + 4 6.708 x = ln 15 + 4 6.708

    443.

    11.6 years

    445.

    12.7 months

    Practice Test

    447.

    48x1748x17 48x+548x+5
    48x210x348x210x3

    449.

    Not a function One-to-one function

    451.

    f −1 ( x ) = x + 9 5 f −1 ( x ) = x + 9 5

    453.

    x = 5 x = 5

    455.

    $31,250.74$31,250.74 $31,302.29$31,302.29 $31,328.32$31,328.32

    457.

    343 = 7 3 343 = 7 3

    459.

    0

    461. This figure shows a logarithmic line passing through (1 over 3, 1), (1, 0), and (3, 1).
    463.

    40 dB

    465.

    2 + log 5 a + log 5 b 2 + log 5 a + log 5 b

    467.

    1 4 ( log 2 5 + 3 log 2 x 4 2 log 2 y 1 4 ( log 2 5 + 3 log 2 x 4 2 log 2 y
    7 log 2 z ) 7 log 2 z )

    469.

    log x 6 ( x + 5 ) 3 log x 6 ( x + 5 ) 3

    471.

    x = 6 x = 6

    473.

    x = ln 8 + 4 6.079 x = ln 8 + 4 6.079

    475.

    1,921 bacteria


    13.1.10: Chapter 10 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?