3.3E: Exercises for Section 7.2
- Last updated
- Jun 25, 2021
- Save as PDF
- Page ID
- 70606
( \newcommand{\kernel}{\mathrm{null}\,}\)
Fill in the blank to make a true statement.
1) sin2x+_______=1
- Answer
- cos2x
2) sec2x−1=_______
- Answer
- tan2x
Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.
3) sin2x=_______
- Answer
- 1−cos(2x)2
4) cos2x=_______
- Answer
- 1+cos(2x)2
Evaluate each of the following integrals by u-substitution.
5) ∫sin3xcosxdx
- Answer
- ∫sin3xcosxdx=sin4x4+C
6) ∫√cosxsinxdx
7) ∫tan5(2x)sec2(2x)dx
- Answer
- ∫tan5(2x)sec2(2x)dx=112tan6(2x)+C
8) ∫sin7(2x)cos(2x)dx
9) ∫tan(x2)sec2(x2)dx
- Answer
- ∫tan(x2)sec2(x2)dx=tan2(x2)+C
10) ∫tan2xsec2xdx
Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)
11) ∫sin3xdx
- Answer
- ∫sin3xdx=−3cosx4+112cos(3x)+C=−cosx+cos3x3+C
12) ∫cos3xdx
13) ∫sinxcosxdx
- Answer
- ∫sinxcosxdx=−12cos2x+C
14) ∫cos5xdx
15) ∫sin5xcos2xdx
- Answer
- ∫sin5xcos2xdx=−5cosx64−1192cos(3x)+3320cos(5x)−1448cos(7x)+C
16) ∫sin3xcos3xdx
17) ∫√sinxcosxdx
- Answer
- ∫√sinxcosxdx=23(sinx)3/2+C
18) ∫√sinxcos3xdx
19) ∫secxtanxdx
- Answer
- ∫secxtanxdx=secx+C
20) ∫tan(5x)dx
21) ∫tan2xsecxdx
- Answer
- ∫tan2xsecxdx=12secxtanx−12ln(secx+tanx)+C
22) ∫tanxsec3xdx
23) ∫sec4xdx
- Answer
- ∫sec4xdx=2tanx3+13sec2xtanx=tanx+tan3x3+C
24) ∫cotxdx
25) ∫cscxdx
- Answer
- ∫cscxdx=−ln|cotx+cscx|+C
26) ∫tan3x√secxdx
For exercises 27 - 28, find a general formula for the integrals.
27) ∫sin2axcosaxdx
- Answer
- ∫sin2axcosaxdx=sin3(ax)3a+C
28) ∫sinaxcosaxdx.
Use the double-angle formulas to evaluate the integrals in exercises 29 - 34.
29) ∫π0sin2xdx
- Answer
- ∫π0sin2xdx=π2
30) ∫π0sin4xdx
31) ∫cos23xdx
- Answer
- ∫cos23xdx=x2+112sin(6x)+C
32) ∫sin2xcos2xdx
33) ∫sin2xdx+∫cos2xdx
- Answer
- ∫sin2xdx+∫cos2xdx=x+C
34) ∫sin2xcos2(2x)dx
For exercises 35 - 43, evaluate the definite integrals. Express answers in exact form whenever possible.
35) ∫2π0cosxsin2xdx
- Answer
- ∫2π0cosxsin2xdx=0
36) ∫π0sin3xsin5xdx
37) ∫π0cos(99x)sin(101x)dx
- Answer
- ∫π0cos(99x)sin(101x)dx=0
38) ∫π−πcos2(3x)dx
39) ∫2π0sinxsin(2x)sin(3x)dx
- Answer
- ∫2π0sinxsin(2x)sin(3x)dx=0
40) ∫4π0cos(x/2)sin(x/2)dx
41) ∫π/3π/6cos3x√sinxdx (Round this answer to three decimal places.)
- Answer
- ∫π/3π/6cos3x√sinxdx≈0.239
42) ∫π/3−π/3√sec2x−1dx
43) ∫π/20√1−cos(2x)dx
- Answer
- ∫π/20√1−cos(2x)dx=√2
44) Find the area of the region bounded by the graphs of the equations y=sinx,y=sin3x,x=0, and x=π2.
45) Find the area of the region bounded by the graphs of the equations y=cos2x,y=sin2x,x=−π4, and x=π4.
- Answer
- A=1unit2
46) A particle moves in a straight line with the velocity function v(t)=sin(ωt)cos2(ωt). Find its position function x=f(t) if f(0)=0.
47) Find the average value of the function f(x)=sin2xcos3x over the interval [−π,π].
- Answer
- 0
For exercises 48 - 49, solve the differential equations.
48) dydx=sin2x. The curve passes through point (0,0).
49) dydθ=sin4(πθ)
- Answer
- f(x)=3θ8−14πsin(2πθ)+132πsin(4πθ)+C
50) Find the length of the curve y=ln(cscx),forπ4≤x≤π2.
51) Find the length of the curve y=ln(sinx),forπ3≤x≤π2.
- Answer
- s=ln(√3)
52) Find the volume generated by revolving the curve y=cos(3x) about the x-axis, for 0≤x≤π36.
For exercises 53 - 54, use this information: The inner product of two functions f and g over [a,b] is defined by f(x)⋅g(x)=⟨f,g⟩=∫baf⋅gdx. Two distinct functions f and g are said to be orthogonal if ⟨f,g⟩=0.
53) Show that sin(2x),cos(3x) are orthogonal over the interval [−π,π].
- Answer
- ∫π−πsin(2x)cos(3x)dx=0
54) Evaluate ∫π−πsin(mx)cos(nx)dx.
55) Integrate y′=√tanxsec4x.
- Answer
- y=∫√tanxsec4xdx=23(tanx)3/2+27(tanx)7/2+C=221(tanx)3/2[7+3tan2x]+C
For each pair of integrals in exercises 56 - 57, determine which one is more difficult to evaluate. Explain your reasoning.
56) ∫sin456xcosxdx or ∫sin2xcos2xdx
57) ∫tan350xsec2xdx or ∫tan350xsecxdx
- Answer
- The second integral is more difficult because the first integral is simply a u-substitution type.