Skip to main content
Mathematics LibreTexts

5.1.1: Simple Interest

  • Page ID
    168166
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    In this section, you will learn to:

    • Use the simple interest formula to find an account balance, principal, rate, or time.
    Prerequisite Skills

    Before you get started, take this prerequisite quiz.

    1. Solve \(5=2(x+9)\).

    Click here to check your answer

    \(x=-\dfrac{13}{2}\)

    If you missed this problem, review Section 1.1. (Note that this will open in a new window.)

    2. Solve \(x=-3(7-10)\).

    Click here to check your answer

    \(x=9\)

    If you missed this problem, review Section 1.1. (Note that this will open in a new window.)

    3. Solve \(-12=x(3+8)\).

    Click here to check your answer

    \(x=-\dfrac{12}{11}\)

    If you missed this problem, review Section 1.1. (Note that this will open in a new window.)

    4. Solve \(12=4(2-x)\).

    Click here to check your answer

    \(x=-1\)

    If you missed this problem, review Section 1.1. (Note that this will open in a new window.)

    Simple Interest

    It costs to borrow money. The rent one pays for the use of money is called the interest. The amount of money that is being borrowed or loaned is called the principal, also called the present value. Simple interest is paid only on the original amount borrowed. When the money is loaned out, the person who borrows the money generally pays a fixed rate of interest on the principal for the time period he keeps the money. Although the interest rate is most commonly specified for a year, it may be specified for a week, a month, or a quarter, etc. Credit card companies often list their charges as monthly rates, sometimes it is as high as 1.5% a month.

    Definition: Simple Interest

    If an amount \(P\) is borrowed for a time \(t\) at an interest rate of \(r\) per time period, then the simple interest is given by

    \[ I = P \cdot r \cdot t\]

    Definition: Accumulated Value

    The total amount \(A\), also called the accumulated value or the future value, is given by

    \[ \begin{align*} A &= P + I \\[4pt] &= P + Prt \end{align*}\]

    or

    \[ A = P(1+rt) \label{simple3}\]

    where interest rate \(r\) is expressed in decimals.

    Example \(\PageIndex{1}\)

    Ursula borrows $600 for 5 months at a simple interest rate of 15% per year. Find the interest, and the total amount she is obligated to pay?

    Solution

    The interest is computed by multiplying the principal with the interest rate and the time.

    \[\begin{align*} \mathrm{I} &=\operatorname{Prt} \\[4pt] &=\$ 600(0.15) \frac{5}{12} \\[4pt] &=\$ 37.50 \end{align*} \]

    The total amount is

    \[\begin{align*} \mathrm{A} &=\mathrm{P}+\mathrm{I} \\[4pt] &=\$ 600+\$ 37.50 \\[4pt] &=\$ 637.50 \end{align*} \]

    Incidentally, the total amount can be computed directly via Equation \ref{simple3} as

    \[\begin{align*} A &=P(1+r t) \\[4pt] &=\$ 600[1+(0.15)(5 / 12)] \\[4pt] &=\$ 600(1+0.0625) \\[4pt] &=\$ 637.50 \end{align*} \]

    Example \(\PageIndex{2}\)

    Jose deposited $2500 in an account that pays 6% simple interest. How much money will he have at the end of 3 years?

    Solution

    The total amount or the future value is given by Equation \ref{simple3}.

    \[\begin{align*} A &= P(1 + rt) \\[4pt] &=\$ 2500[1+(.06)(3)] \\[4pt] \mathrm{A} &=\$ 2950 \end{align*}\]

    Example \(\PageIndex{3}\)

    Darnel owes a total of $3060 which includes 12% simple interest for the three years he borrowed the money. How much did he originally borrow?

    Solution

    This time we are asked to compute the principal \(P\) via Equation \ref{simple3}.

    \[\begin{align*} \$ 3060 &=\mathrm{P}[1+(0.12)(3)] \\[4pt] \$ 3060 &=\mathrm{P}(1.36) \\[4pt] \dfrac{\$ 3060}{1.36}&=\mathrm{P} \\[4pt] \$ 2250 &=\mathrm{P} \quad \text { Darnel originally borrowed \$2250. } \end{align*}\]

    Example \(\PageIndex{4}\)

    A Visa credit card company charges a 1.5% simple interest finance charge each month on the unpaid balance. If Martha owed $2350 and has not paid her bill for three months, how much does she owe now?

    Solution

    Before we attempt the problem, the reader should note that in this problem the rate of finance charge is given per month and not per year.

    The total amount Martha owes is the previous unpaid balance plus the finance charge.

    \[ A=\$ 2350+\$ 2350(.015)(3)=\$ 2350+\$ 105.75=\$ 2455.75 \nonumber\]

    Alternatively, again, we can compute the amount directly by using formula \(A = P(1 + rt)\)

    \[A=\$ 2350[1+(.015)(3)]=\$ 2350(1.045)=\$ 2455.75 \nonumber\]

    Summary

    Below is a summary of the formulas we developed for calculations involving simple interest:

    Simple interest

    If an amount \(P\) is borrowed for a time \(t\) at an interest rate of \(r\) per time period, then the simple interest is given by

    \[ I = P \cdot r \cdot t \nonumber\]

    The total amount \(A\), also called the accumulated value or the future value, is given by

    \[ A = P + I = P + Prt \nonumber\]

    or

    \[ A = P(1+rt) \nonumber\]

    where interest rate \(r\) is expressed in decimals.

    Exercises

    PROBLEM SET: SIMPLE INTEREST

    Do the following simple interest problems.

    1) If an amount of $2,000 is borrowed at a simple interest rate of 10% for 3 years, how much is the interest?

    2) You borrow $4,500 for six months at a simple interest rate of 8%. How much is the interest?

    3) John borrows $2400 for 3 years at 9% simple interest. How much will he owe at the end of 3 years?

    4) Jessica takes a loan of $800 for 4 months at 12% simple interest. How much does she owe at the end of the 4-month period?

    5) If an amount of $2,160, which includes a 10% simple interest for 2 years, is paid back, how much was borrowed 2 years earlier?

    6) Jamie just paid off a loan of $2,544, the principal and simple interest. If he took out the loan six months ago at 12% simple interest, what was the amount borrowed?

    7) Shanti charged $800 on her charge card and did not make a payment for six months. If there is a monthly charge of 1.5%, how much does she owe?

    8) A credit card company charges 18% interest on the unpaid balance. If you owed $2000 three months ago and have been delinquent since, how much do you owe?

    9) An amount of $2000 is borrowed for 3 years. At the end of the three years, $2660 is paid back. What was the simple interest rate?

    10) Nancy borrowed $1,800 and paid back $1,920, four months later. What was the simple interest rate?

     


    This page titled 5.1.1: Simple Interest is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Rupinder Sekhon and Roberta Bloom via source content that was edited to the style and standards of the LibreTexts platform.