Skip to main content
Mathematics LibreTexts

1.3: Shifting and Reflecting

  • Page ID
    227
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. Six Basic Functions

    Below are six basic functions:

    1. SHIFT.HTM_txt_absx.gif

    2. xsquare.gif


    3. xCube.gif


    4. SHIFT.HTM_txt_oneOverX.gif


    5. rootx.gif


    6. cubeRoot.gif

      Memorize the shapes of these functions.

    2. Horizontal Shifting

    Consider the graphs

    SHIFT.HTM_txt_RtShift.gif

    \(y =\)

    • \((x+0)^2\)
    • \((x+1)^2\)
    • \((x+2)^2\)
    • \((x+3)^2\)

    Exercise

    Use the list features of a calculator to sketch the graph of

    \(y = \dfrac{1}{ [x - \{0,1,2,3\}] }\)

    Horizontal Shifting Rules

    • Rule 1: \(f(x - a) = f(x)\) shifted \(a\) units to the right.
    • Rule 2: \(f(x + a) = f(x)\) shifted \(a\) units to the left.

    3. Vertical Shifting

    Consider the graphs

    SHIFT.HTM_txt_vertShft.gif

    \(y =\)

    • \(x^3\)
    • \(x^3+ 1\)
    • \(x^3 + 2\)
    • \(x^3 + 3\)

    Exercise

    Use the list features of a calculator to sketch the graph of

    \(y = x^3 - \{0,1,2,3\}\)

    Vertical Shifting Rules

    • Rule 3: \(f(x ) + a = f(x)\) shifted a units up.
    • Rule 4: \(f(x) - a = f(x)\) shifted a units down.

    4. Reflecting About the x-axis

    Consider the graphs of

    \(y = x^2\) and \(y = -x^2\).

    SHIFT.HTM_txt_xReflect.gif

    x-Axis Reflection Rule

    Rule 5: \(-f(x) = f(x)\) reflected about the x-axis.

    5. Reflecting About the y-axis

    Exercise

    Use the calculator to graph

    \(y=\sqrt{x}\)

    and
    \(y=\sqrt{-x}\)

    y-Axis Reflection Rule

    Rule 6: \(f(-x ) = f(x)\) reflected about the y-axis.

    6. Stretching and Compressing

    Exercise

    Graph the following:

    \(y = \{1,2,3,4\}x^3\)

    \(y = {1/2,1/3,1/4,1/5}x^3\)

    Stretching and Compression rules:

    • Rule 7: \(cf(x ) = f(x)\) (for \(c > 1\)) stretched vertically.
    • Rule 8: \(cf(x ) = f(x)\) (for \(c < 1\)) compressed vertically.

    Exercise

    Graph the following

    1. \(y = x^2 - 10\)
    2. \(y = \sqrt{x - 2}\)
    3. \(y = -|x - 5| + 3\)

    We will do some examples (including the graph of the winnings for the gambler and for the casino).

    7. Increasing and Decreasing Functions

    Definition

    A function is called increasing if as an object moves from left to right, it is moving upwards along the graph. Or equivalently,

    If \(x < y\), then \(f(x) < f(y)\).

    SHIFT.HTM_txt_incDec.gif

    Example 1

    The curve

    \[y = x^2\]

    is increasing on \((0,\infty)\) and decreasing on \((-\infty,0)\).

    Contributors


    This page titled 1.3: Shifting and Reflecting is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?