Skip to main content
Mathematics LibreTexts

1.4: Composition and Inverses

  • Page ID
    224
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Composition of Functions

    Example \(\PageIndex{1}\)

    Sociologists in Holland determine that the number of people \(y\) waiting in a water ride at an amusement park is given by

    \[y = \dfrac{1}{50}C^2 + C + 2 \nonumber \]

    where \(C\) is the temperature in degrees \(C\). The formula to convert Fahrenheit to Celsius \(C\) is given by

    \[C = \dfrac{5}{9}F + \dfrac{160}{9}. \nonumber \]

    To get a function of \(F\) we compose the two function:

    \[y(C(F)) = \left(\dfrac{1}{50}\right)\left[\dfrac{5}{9}F + \dfrac{160}{9}\right]^2 + \left[\dfrac{5}{9}F + \dfrac{160}{9}\right] + 2 \nonumber \]

    Exercise \(\PageIndex{1}\)

    If

    • \(f(x) = 3x + 2\)
    • \(g(x) = 2x^2 + 1\)
    • \(h(x) = \sqrt{x-2}\)
    • \(c(x) = 4\)

    Find

    1. \(f(g(x))\)
    2. \(f(h(x))\)
    3. \(f(f(x))\)
    4. \(h(c(x))\)
    5. \(c(f(g(h(x))))\)

    1-1 Functions

    Definition: 1-1 (one-to-one)

    A function \(f(x)\) is 1-1 if

    \[f(a) = f(b)\]

    implies that

    \[a = b.\]

    Example \(\PageIndex{2}\)

    If

    \[f(x) = 3x + 1 \nonumber\]

    then

    \[3a + 1 = 3b + 1 \nonumber\]

    implies that

    \[3a = 3b \nonumber\]

    hence

    \[a = b \nonumber\]

    therefore \(f(x)\) is 1-1.

    Example \(\PageIndex{3}\)

    If

    \[f(x) = x^2 \nonumber\]

    then

    \[a^2 = b^2 \nonumber\]

    implies that

    \[a^2-b^2 = 0 \nonumber\]

    or that

    \[(a - b)(a + b) = 0 \nonumber\]

    hence

    \[a = b \text{ or } a = -b \nonumber\]

    For example

    \[f (2) = f (-2) = 4 \nonumber\]

    Hence \(f(x)\) is not 1-1.

    Horizontal Line Test

    If every horizontal line passes through \(f(x)\) at most once then \(f(x)\) is 1-1.

    oneone.gif

    Inverse Functions

    Definition: Inverse function

    A function \(g(x)\) is an inverse of \(f(x)\) if

    \[f(g(x)) = g(f(x)) = x.\]

    Example \(\PageIndex{4}\)

    The volume of a lake is modeled by the equation

    \[V(t) = \dfrac{1}{125}h^3. \nonumber\]

    Show that the inverse is

    \[h(N) = 5V^{\frac{1}{3}}. \nonumber\]

    Solution: We have

    \[h(V(h)) = 5(\dfrac{1}{125}h^3)^{\frac{1}{3}} = \dfrac{5}{5}h = h \nonumber\]

    and

    \[v(h(V)) = \dfrac{1}{125}(5V^{\frac{1}{3}})^3 = \dfrac{1}{125}(125V) = V. \nonumber\]

    Step by Step Process for Finding the Inverse

    1. Interchange the variables
    2. Solve for \(y\)
    3. Write in terms of \(f^{-1}(x)\)

    Example\(\PageIndex{5}\)

    Find the inverse of

    \[f (x) = y = 3x^3 - 5 \nonumber\]

    Solution

    \[\begin{align} x &= 3y^3 - 5 \\ x + 5 &= 3y^3 \\ \dfrac{(x + 5)}{3} &= y^3 ,\\ \left[\dfrac{(x + 5)}{3}\right]^{\frac{1}{3}}&=y \end{align}\]

    \[f^{-1}(x) = \left[\dfrac{(x + 5)}{ 3 }\right]^{\frac{1}{3}}. \nonumber\]

    Graphing

    To graph an inverse we draw the \(y = x\) line and reflect the graph across this line.

    To interactively view the graph of an inverse click here:

    mathcsjava.emporia.edu/~greenlar/Inverse/inverse.html

    Contributors and Attributions


    This page titled 1.4: Composition and Inverses is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?