1.4: Review of Vectors
( \newcommand{\kernel}{\mathrm{null}\,}\)
If you have ever sat through physics class, you must have heard your instructor talk about position/velocity/ acceleration "vectors". If it has been a while since your last physics lecture, you may need to be refreshed about these concepts. In this section, we will be discussing the basics about vectors and the correlation between position, velocity, and acceleration vectors.
Introduction
A particles position during time interval, , described in parametric equations is defined as:
x=f(t),y=g(t),z=h(t),t∈I
where the particle's path is composed of points:
(x,y,z)=(f(t),g(t),h(t)),t∈I.
Written as vector form, the particle's position is modeled by the vector:
r(t)=→OP=f(t)ˆi+g(t)ˆj+h(t)ˆj
where f,g,h are component functions of the vector and ˆi,ˆj,ˆk represent the x,y,z components.
Let
r(t)=f(t)ˆi+g(t)ˆj+h(t)ˆk
be a vector function with domain D, and La vector. We say that r has a limit L as t approaches t0 and write
limt→t0r(t)=L
if for every number ϵ>0 there exists a corresponding number δ>0 such that for all t∈D,
|r(t)−L|<ϵ
whenever
0<|t−t0|<δ.
A vector function r(t) is continuous at a point t=t0 in its domain if
limt→t0r(t)=r(t0).
The function is continuous if it is continuous at every point in its domain.
The above definition sets the boundaries for continuity for a vector function. As we can see, it is very similar to the that of a scalar function.
The vector function,
r(t)=f(t)ˆi+g(t)ˆj+h(t)ˆk
has a derivative (is differentiable) at t iff, g, and h have derivatives at t. The derivative is the vector function:
r′(t)=drdt=lim△t→0r(t+△t)−r(t)△t=dfdtˆi+dgdtˆj+dhdtˆk.
If r is the position vector of a particle moving along a smooth curve in space, then
v(t)=drdt
is the particle's velocity vector, tangent to the curve. At any time t, the direction of v is the direction of motion, the magnitude of v is the particle's speed, and the derivative a=dvdt, when it exists, is the particle's acceleration vector. In summary,
- Velocity is the derivative of position: v=drdt,
- Speed is the magnitude of velocity: speed=|v|,
- Acceleration is the derivative of velocity: a=dvdt=d2rdt,
- The unit vector, v|v|, is the direction of motion at time t.
Differential Rules for Vector Function
Let u and v be clifferentiable vector functions of t, C a constant vector, c any scalar, and f any differentiable scalar function.
- Constant Function Rule ddtC=0,
- Scalar Multiple Rules ddt[cu(t))]=cu′(t) ddt[f(t)u(t)]=f′(t)u(t)+f(t)u′(t),
- Sum Rule: ddt[u(t)+v(t)]=u′(t)+v′(t),
- Difference Rule: ddt[u(t)−v(t)]=u′(t)−v′(t),
- Dot Product Rule: ddt[u(t)⋅v(t)]=u′(t)v(t)⋅u(t)v′(t),
- Cross Product Rule: ddt[u(t)×v(t)]=u′(t)v(t)×u(t)v′(t),
- Chain Rule: ddt[u(f(t))]=f′(t)u′(f(t)).
If r is a differentiable vector function of t of constant length, then
r⋅drdt=0.
Prove the vector function r(t)=(cos(t))ˆi+(sin(t))ˆj+tˆk is continuous at t=π4.
Solution
To prove the vector function is continuous, we need to prove that:
r(π4)=limt→π4r(t).
To find the limit at t=π/4, we must compute:
limt→π4r(t)=(limt→π4f(t))ˆi+(limt→π4g(t))ˆj+(limt→π4h(t))ˆk=(limt→π4sin(t))ˆi+(limt→π4cos(t))ˆj+(limt→π4t)ˆk
limt→π4r(t)=√22ˆi+√22ˆj+π4ˆk.
Now we need to find out what r(π/4) is equal to:
r(π4)=(sin(π4))ˆi+(cos(π4))ˆj+(π4)ˆk
=√22ˆi+√22ˆj+π4ˆk.
Since
r(π4)=limt→π4r(t)=√22ˆi+√22ˆj+π4ˆk,
the vector function is continuous at t=π4.
Given the vector function, find the velocity and acceleration acceleration vectors, and speed when t=1:
r(t)=(t+1)ˆi+t2√(2)ˆj+t33ˆk
The find the velocity, we must take the first derivative of the vector function.
v(t)=drdt
v=r′(t)=ˆi+2t√(2)ˆj+t2ˆk
To find the acceleration, we must take the first derivative of the velocity vector and second of the position vector.
a=dvdt=d2rdt2
a(t)=v′(t)=r″
The speed at t=1 is found by taking the magnitude of the velocity at t=1.
\mathbf{v}(1)= \hat{\textbf{i}} + \dfrac{2}{\sqrt{2}} \hat{\textbf{j}}+t^2 \hat{\textbf{k}} \nonumber
|\mathbf{v}(1)|= \sqrt{(1^2)+ (\dfrac{2}{\sqrt{2}})^2+ (1^2)} =2\nonumber
References
- Weir, Maurice D., Joel Hass, and George B. Thomas. Thomas' Calculus: Early Transcendentals. Boston: Addison-Wesley, 2010. Print.