Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

6.4.1: Fourier's Method

Separation of variables ansatz \(c(x,t)=v(x)w(t)\) leads to the eigenvalue problem, see the arguments of Section 4.5,

-\triangle v&=&\lambda v\ \ \mbox{in}\ \Omega\\
\label{ewpar2} \tag{}
\frac{\partial v}{\partial n}&=&0\ \ \mbox{on}\ \partial\Omega,

and to the ordinary differential equation

\begin{equation} \tag{}
w'(t)+\lambda Dw(t)=0.

Assume \(\Omega\) is bounded and \(\partial\Omega\) sufficiently regular, then the eigenvalues of (\ref{ewpar1}), (\ref{ewpar2}) are countable and


Let \(v_j(x)\) be a complete system of orthonormal (in \(L^2(\Omega)\)) eigenfunctions.
Solutions of (\ref{ewpar3})  are


where \(C_j\) are arbitrary constants.

According to the superposition principle,

$$c_N(x,t):=\sum_{j=0}^N C_je^{-D\lambda_jt}v_j(x)$$

is a solution of the differential equation (\ref{ewpar1}) and

$$c(x,t):=\sum_{j=0}^\infty C_je^{-D\lambda_jt}v_j(x),$$


$$C_j=\int_\Omega\ c_0(x)v_j(x)\ dx,$$

is a formal solution of the initial-boundary value problem (6.4.1)-(6.4.3).

Diffusion in a tube

Consider a solution in a tube, see Figure

Figure Diffusion in a tube

Assume the initial concentration \(c_0(x_1,x_2,x_3)\) of the substrate in a solution  is constant if \(x_3=const.\) It follows from a uniqueness result below that the solution of the initial-boundary value problem \(c(x_1,x_2,x_3,t)\) is independent of \(x_1\) and \(x_2\).

Set \(z=x_3\), then the above initial-boundary value problem reduces to

c_z&=&0,\ \ z=0,\ z=l.

The (formal) solution is

$$c(z,t)=\sum_{n=0}^\infty C_ne^{-D\left(\frac{\pi}{l}n\right)^2 t}\cos\left(\frac{\pi}{l}nz\right),$$


C_0&=&\frac{1}{l}\int_0^l\ c_0(z)\ dz\\
C_n&=&\frac{2}{l}\int_0^l\ c_0(z)\cos\left(\frac{\pi}{l}nz\right)\ dz,\ \ n\ge1.